Life cycle analysis of UK coal fired power plants

2008 ◽  
Vol 49 (2) ◽  
pp. 212-220 ◽  
Author(s):  
Naser A. Odeh ◽  
Timothy T. Cockerill
2018 ◽  
Author(s):  
Timothy J Skone ◽  
Greg Schivley ◽  
Matthew Jamieson ◽  
Joe Marriott ◽  
Greg Cooney ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 146-154
Author(s):  
Zoltán Korényi

Összefoglaló. A dolgozat témája a különböző erőműfajták életciklusra vonatkozó fajlagos anyagigényének a vizsgálata. Az elemzések a nemzetközi szakirodalmi források felhasználásával történtek. Módszere, a bázisadatok elemzése, majd az anyagigényeknek az erőmű beépített teljesítményére és az életciklus alatt megtermelt villamosenergiára vonatkoztatott fajlagos értékek meghatározása. Az eredmények azt mutatják, hogy a nap- és szélerőművek elterjedésével a hagyományos erőművek által felhasznált fosszilis energiaforrások (pl. a szén) bent maradnak ugyan a földben, de cserébe az új technológia legyártásához a hagyományos anyagokból (beton, acél, alumínium, réz stb.) fajlagosan jóval nagyobb mennyiségekre lesz szükség. Emellett megnő a ritkán előforduló fémek (gallium, indium stb.) felhasználása, ami Európában, a lelőhelyek hiányában, új kockázatokkal jár. Summary. The topic of the study is to determine the material use of different power plant types. This is a part of the known life cycle analysis (LCA). The aim of LCA is to determine the impact of human activity on nature. The procedure is described in the standards (ISO 14040/41/42/42). Under environmental impact we mean changes in our natural environment, air, water, soil pollution, noise and impacts on human health. In the LCA, the environmental impact begins with the opening of the mine, continues with the extraction and processing of raw materials, and then with the production of equipment, construction and installation of the power plant. This is followed by the commissioning and then operation of the power plants for 20-60 years, including maintenance. The cycle ends with demolition, which is followed by recycling of materials. The remaining waste is disposed of. This is the complex content of life cycle analysis. Its purpose is to determine the ecological footprint of man. The method of the present study is to isolate a limited area from the complex LCA process. This means determining the amount of material needed to build different power plants, excluding mining and processing of raw materials. Commercially available basic materials are built into the power plant’s components. The research is based on the literature available in the international area. The author studied these sources, analysed the data, and checked the authenticity. It was not easy because the sources from different times, for different power plants showed a lot of uncertainty. In overcoming the uncertainties, it was a help that the author has decades of experience in the realisation of power plants. It was considered the material consumption related to the installed electricity capacity of the power plant (tons/MW) as basic data. The author then determined the specific material consumptions, allocated to the electric energy generated during the lifetime, in different power plants. The calculation is carried out with the help of the usual annual peak load duration hours and the usual lifetime of the power plants. The results show that with the spread of solar and wind energy, the fossil energy sources previously needed for conventional power plants will remain inside the Earth, but in exchange for the production of new technological equipment from traditional structural materials (concrete, steel, aluminium, copper and plastic), the special need multiplies. If we compare the power plants using renewable energy with the electric energy produced during the life cycle of a nuclear power plant, the specific installed material requirement of a river hydropower plant is 37 times, that of an onshore wind farm it is 9.6 times, and that of an outdoor solar power park is 6.6 times higher. Another important difference is that wind turbines, solar panels and batteries also require rare materials that do not occur in Europe (e.g. gallium, indium, yttrium, neodymium, cobalt, etc.). This can lead to security risks in Europe in the long run.


2013 ◽  
Vol 4 (2) ◽  
pp. 129-135 ◽  
Author(s):  
I. Fazekas ◽  
Gy. Szabó ◽  
Sz. Szabó ◽  
M. Paládi ◽  
G. Szabó ◽  
...  

Abstract The aim of our report is to refer on the actual state of small biogas power plants in Hungary summarising the increase in their number and capacity and their effects on climatic change. The above is based on the CO2 emission of the energetic utilization of biogas and the calculation of its ecological footprint that were compared to the environmental effects of natural gas energetic utilization. The aim of this paper does not include the complete life cycle analysis therefore the environmental benefits of the energetic utilization of biogas produced from various raw material are presented via only the direct CO2 emission of the production process.


2018 ◽  
Author(s):  
Timothy J. Skone ◽  
Greg Schivley ◽  
Matt Jamieson ◽  
Joe Marriott ◽  
Greg Cooney ◽  
...  

2016 ◽  
Vol 20 (4) ◽  
pp. 1147-1159 ◽  
Author(s):  
Krzysztof Pikon ◽  
Magdalena Bogacka ◽  
Wojciech Stanek ◽  
Lucyna Czarnowska

The use of coal is suspected to have high environmental impact. Natural gas is treated as more environmentally friendly with high methane content and lower emission factors. In order to calculate the environmental impact in the whole life cycle associated with combustion of coal and natural gas all stages from ?cradle to grave? should be taken into account. In particular, the transportation stage, especially in the case of life cycle analysis of gas, seems to be crucial. The distance of transmission of gas from gas fields, for instance located in Siberia, could be mainly associated with high diffuse emission of methane. The comparison of environmental impact assessment of coal and natural gas utilization for heating purposes is presented in the paper. The additional factor taken into account is localisation of boilers. In the analysis the coal is sombusted in combined heat and power plants equipped with flue gas treatment units is that released emissions are relatively remote from an urban area. In contrast, the natural gas is burned in small domestic installations with no additional FGT systems. The results of the analysis are given in 6 major impact categories. Moreover, the results of the life cycle analysis were brought into comprehensive thermo-ecological cost index, which is a cumulated exergy consumption of non-renewable resources. The results presented in the paper refer to the contemporary problem of the choice of energy sources in the context of its overall environmental efficiency.


2018 ◽  
Author(s):  
Timothy J Skone ◽  
Greg Schivley ◽  
Matthew Jamieson ◽  
Joe Marriott ◽  
Greg Cooney ◽  
...  

Author(s):  
Riccardo Basosi ◽  
Roberto Bonciani ◽  
Dario Frosali ◽  
Giampaolo Manfrida ◽  
Maria Laura Parisi ◽  
...  

A Life Cycle Analysis was performed considering three existing power plants of comparable size operating with different sources of renewable energy: geothermal, solar and wind. Primary data were used for building the life cycle inventories. The geothermal power plant includes emissions treatment for removal of hydrogen sulfide and mercury. The scenario about the substitution of natural emissions from geothermal energy, with specific reference to the greenhouse effect, is also investigated performing a sensitivity analysis. The results are characterized employing a wide portfolio of environmental indicators employing the Recipe 2016 and the ILCD 2011 Midpoint+ methods; normalization and weighting are also applied using the Recipe 2016 method at endpoint level. The results demonstrate a good eco-profile of geothermal power plant with respect to other renewable energy systems and allow for a critical analysis to support potential improvements of the environmental performances.


Sign in / Sign up

Export Citation Format

Share Document