Biogas utilization and its environmental benefits in Hungary

2013 ◽  
Vol 4 (2) ◽  
pp. 129-135 ◽  
Author(s):  
I. Fazekas ◽  
Gy. Szabó ◽  
Sz. Szabó ◽  
M. Paládi ◽  
G. Szabó ◽  
...  

Abstract The aim of our report is to refer on the actual state of small biogas power plants in Hungary summarising the increase in their number and capacity and their effects on climatic change. The above is based on the CO2 emission of the energetic utilization of biogas and the calculation of its ecological footprint that were compared to the environmental effects of natural gas energetic utilization. The aim of this paper does not include the complete life cycle analysis therefore the environmental benefits of the energetic utilization of biogas produced from various raw material are presented via only the direct CO2 emission of the production process.

2018 ◽  
Author(s):  
Timothy J Skone ◽  
Greg Schivley ◽  
Matthew Jamieson ◽  
Joe Marriott ◽  
Greg Cooney ◽  
...  

2017 ◽  
Vol 105 (5-6) ◽  
pp. 516
Author(s):  
Guilhem Grimaud ◽  
Bertrand Laratte ◽  
Nicolas Perry

The purpose of this study is to determine the environmental and economic balance between a collection of waste requiring the transport to a centralized recycling plant versus the displacement of a recycling plant near the waste production’s location. Two systems are compared in the study with economic and environmental Life cycle analysis (LCC and LCA) tools. The first one considers a centralized recycling plant that gathers batch of cables from different locations in Europe. The second scenario considers a transportable recycling plant, the Cablebox (designed by MTB Manufacturing), which is regularly carried to be close to the waste deposit to recycle waste cables. On the one hand, the study demonstrates huge environmental benefits for transportable recycling plants in comparison with the centralized system. The overall environmental impact is halved on the climate change indicator. On the other hand, the results show the economic advantages of such solution. The treatment cost per ton of recycling is reduced by 5 to 8%. Transportable recycling solutions seem to be a good answer to solve End-of-Life logistic issues, both from an economic and an environmental point of view.


2016 ◽  
Vol 5 (6) ◽  
pp. 38-47
Author(s):  
Мануйлова ◽  
Natalia Manuylova ◽  
Булычев ◽  
Sergey Bulychev ◽  
Горбачев ◽  
...  

Problems related to a comprehensive assessment of construction materials’ environmental safety, taking into account stages of products’ complete life cycle have been considered. Approaches to determination of material’s safety and environmental record as environmental characteristics of the material, regardless of its use in a specific product, and without regard to processing technology have been described. It has been proposed to consider material’s safety and environmental record as the sum of three environmental safety factors for material’s life cycle stages: production of raw material and its potential environmental hazard; processing of raw material in the material; proper material from the standpoint of its environmental safety and effects on the human body. This criterion application allows compare the environmental properties both of cognate materials and dissimilar ones.


2020 ◽  
Vol 12 (12) ◽  
pp. 4884
Author(s):  
Yan Li ◽  
Guoshun Wang ◽  
Zhaohao Li ◽  
Jiahai Yuan ◽  
Dan Gao ◽  
...  

At present, the excess capacity in China’s coke industry can be deployed to utilize some low-rank coal, replacing coking coal with potential economic gains, energy efficiency, and environmental benefits. This study presents a life cycle analysis to model these potential benefits by comparing a metallurgical coke technical pathway with technical pathways of gasification coke integrated with different chemical productions. The results show that producing gasification coke is a feasible technical pathway for the transformation and development of the coke industry. However, its economic feasibility depends on the price of cokes and coals. The gasification coke production has higher energy consumption and CO2 emissions because of its lower coke yield. Generally speaking, using gasification coke to produce F-T oils has higher economic benefits than producing methanol, but has lower energy efficiency and higher carbon emissions.


Author(s):  
Roberts Kaķis ◽  
Dagnija Blumberga ◽  
Ģirts Vīgants

The article deals with the problem facing Latvian inventors in how to develop the idea to a real product. There are often cases where innovative ideas “migrate” from original inventors to other inventors, when they turn to them to seek support for developing and supporting the idea. The main components of the guidelines are the establishment of a patent application and, in general, a description of the entire patent acquisition process and the creation of a life cycle analysis using the SimaPro software. The article is intended primarily for the development of environmentally friendly inventions, which is why the life cycle analysis is one of the main components of the article, to make it possible to conclude whether the production and use of the new product will not result in a higher “ecological footprint” than previously used technologies, paying particular attention to the inventor stage in order to accurately develop a life-cycle analysis. The article does not only explore the necessary theoretical knowledge of the realisation of the idea to the product, but also looks at the pilot case, a practical example of an innovative “dust co-firing burner” compared to the conventional natural gas burner. The life-cycle analysis compares the following steps: manufacture of plants, transportation of plants and special emphasis on the combustion phase of fuels, three scenarios are examined: a natural gas burner burning natural gas, a dust burner in which natural gas is co-incinerated and fine wood particles − dust and a dust burner burning. biomethane and wood dust. The use of such an installation would not only reduce emissions from the replacement of natural gas by wood dust, but also allow energy companies to work more effectively, as it would be possible to regulate the proportion of different fuels depending on demand, because the fuels have different heat of combustion. The article establishes a methodology to analyse the quality and implementation of inventions in response to the following key questions: − how to identify original ideas and how to protect authors from the migration of ideas; − how to collect and analyse the risks associated with migration of ideas; − how to use life cycle analysis for the assessment of the “ecological footprint” of the invention.


2021 ◽  
Vol 2 (2) ◽  
pp. 146-154
Author(s):  
Zoltán Korényi

Összefoglaló. A dolgozat témája a különböző erőműfajták életciklusra vonatkozó fajlagos anyagigényének a vizsgálata. Az elemzések a nemzetközi szakirodalmi források felhasználásával történtek. Módszere, a bázisadatok elemzése, majd az anyagigényeknek az erőmű beépített teljesítményére és az életciklus alatt megtermelt villamosenergiára vonatkoztatott fajlagos értékek meghatározása. Az eredmények azt mutatják, hogy a nap- és szélerőművek elterjedésével a hagyományos erőművek által felhasznált fosszilis energiaforrások (pl. a szén) bent maradnak ugyan a földben, de cserébe az új technológia legyártásához a hagyományos anyagokból (beton, acél, alumínium, réz stb.) fajlagosan jóval nagyobb mennyiségekre lesz szükség. Emellett megnő a ritkán előforduló fémek (gallium, indium stb.) felhasználása, ami Európában, a lelőhelyek hiányában, új kockázatokkal jár. Summary. The topic of the study is to determine the material use of different power plant types. This is a part of the known life cycle analysis (LCA). The aim of LCA is to determine the impact of human activity on nature. The procedure is described in the standards (ISO 14040/41/42/42). Under environmental impact we mean changes in our natural environment, air, water, soil pollution, noise and impacts on human health. In the LCA, the environmental impact begins with the opening of the mine, continues with the extraction and processing of raw materials, and then with the production of equipment, construction and installation of the power plant. This is followed by the commissioning and then operation of the power plants for 20-60 years, including maintenance. The cycle ends with demolition, which is followed by recycling of materials. The remaining waste is disposed of. This is the complex content of life cycle analysis. Its purpose is to determine the ecological footprint of man. The method of the present study is to isolate a limited area from the complex LCA process. This means determining the amount of material needed to build different power plants, excluding mining and processing of raw materials. Commercially available basic materials are built into the power plant’s components. The research is based on the literature available in the international area. The author studied these sources, analysed the data, and checked the authenticity. It was not easy because the sources from different times, for different power plants showed a lot of uncertainty. In overcoming the uncertainties, it was a help that the author has decades of experience in the realisation of power plants. It was considered the material consumption related to the installed electricity capacity of the power plant (tons/MW) as basic data. The author then determined the specific material consumptions, allocated to the electric energy generated during the lifetime, in different power plants. The calculation is carried out with the help of the usual annual peak load duration hours and the usual lifetime of the power plants. The results show that with the spread of solar and wind energy, the fossil energy sources previously needed for conventional power plants will remain inside the Earth, but in exchange for the production of new technological equipment from traditional structural materials (concrete, steel, aluminium, copper and plastic), the special need multiplies. If we compare the power plants using renewable energy with the electric energy produced during the life cycle of a nuclear power plant, the specific installed material requirement of a river hydropower plant is 37 times, that of an onshore wind farm it is 9.6 times, and that of an outdoor solar power park is 6.6 times higher. Another important difference is that wind turbines, solar panels and batteries also require rare materials that do not occur in Europe (e.g. gallium, indium, yttrium, neodymium, cobalt, etc.). This can lead to security risks in Europe in the long run.


Author(s):  
Hannes M. Hapke ◽  
Karl R. Haapala ◽  
Zhaohui Wu ◽  
Ted K. A. Brekken

Power generation for the existing electrical grid is largely based on the combustion of fossil fuels. Global concerns have been raised regarding the environmental sustainability of the system due to life cycle impacts, including land losses from fuel extraction and impacts of combustion emissions. An approach to reduce carbon emissions of fossil fuel-based energy employs the conversion of wind energy to electrical energy. The work presented describes modern wind power plants and provides an environmental assessment of a representative wind park from a life cycle perspective. The empirical analysis uses commercially available data, as well as information from an existing wind power plant. The life cycle assessment (LCA) study for a modern wind farm in the northwestern U.S. found that environmental benefits of avoiding typical electricity production greatly outweigh the impacts due to wind turbine construction and maintenance. Effects of component reliability, varying capacity factors, and energy portfolio are explored.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1901
Author(s):  
Viktoria Mannheim ◽  
Zoltan Simenfalvi

This paper assesses the environmental burdens of a polypropylene product throughout the product’s life cycle, especially focusing on the injection-moulding stage. The complete life cycle model of the polypropylene product has been developed from the raw material extraction and production phase through its usage to the end-of-life stage with the help of the life cycle assessment method. To find the answers to the posed problems, different impacts were analysed by GaBi 8.0 software. The analysis lasted from the cradle to the grave, expanding the analysis of the looping method. The aim of the research was to determine the energy and material resources, emissions, and environmental impact indicators. Basically, the article tried to answer three questions: (1) How can we optimize the production phase for the looping method? (2) Which materials and streams are recyclable in the design of the production process? (3) What is the relationship between life cycle stages and total life cycle of the product? As we inspect the life cycle of the product, the load on the environment was distributed as follows: 91% in the production phase, 3% in the use phase, and 6% in the end-of-life phase. The results of the research can be used to develop technologies, especially the injection-moulding process, with a lower environmental impact.


Sign in / Sign up

Export Citation Format

Share Document