scholarly journals Erőművek életciklus-elemzése a fajlagos anyagfelhasználás tükrében

2021 ◽  
Vol 2 (2) ◽  
pp. 146-154
Author(s):  
Zoltán Korényi

Összefoglaló. A dolgozat témája a különböző erőműfajták életciklusra vonatkozó fajlagos anyagigényének a vizsgálata. Az elemzések a nemzetközi szakirodalmi források felhasználásával történtek. Módszere, a bázisadatok elemzése, majd az anyagigényeknek az erőmű beépített teljesítményére és az életciklus alatt megtermelt villamosenergiára vonatkoztatott fajlagos értékek meghatározása. Az eredmények azt mutatják, hogy a nap- és szélerőművek elterjedésével a hagyományos erőművek által felhasznált fosszilis energiaforrások (pl. a szén) bent maradnak ugyan a földben, de cserébe az új technológia legyártásához a hagyományos anyagokból (beton, acél, alumínium, réz stb.) fajlagosan jóval nagyobb mennyiségekre lesz szükség. Emellett megnő a ritkán előforduló fémek (gallium, indium stb.) felhasználása, ami Európában, a lelőhelyek hiányában, új kockázatokkal jár. Summary. The topic of the study is to determine the material use of different power plant types. This is a part of the known life cycle analysis (LCA). The aim of LCA is to determine the impact of human activity on nature. The procedure is described in the standards (ISO 14040/41/42/42). Under environmental impact we mean changes in our natural environment, air, water, soil pollution, noise and impacts on human health. In the LCA, the environmental impact begins with the opening of the mine, continues with the extraction and processing of raw materials, and then with the production of equipment, construction and installation of the power plant. This is followed by the commissioning and then operation of the power plants for 20-60 years, including maintenance. The cycle ends with demolition, which is followed by recycling of materials. The remaining waste is disposed of. This is the complex content of life cycle analysis. Its purpose is to determine the ecological footprint of man. The method of the present study is to isolate a limited area from the complex LCA process. This means determining the amount of material needed to build different power plants, excluding mining and processing of raw materials. Commercially available basic materials are built into the power plant’s components. The research is based on the literature available in the international area. The author studied these sources, analysed the data, and checked the authenticity. It was not easy because the sources from different times, for different power plants showed a lot of uncertainty. In overcoming the uncertainties, it was a help that the author has decades of experience in the realisation of power plants. It was considered the material consumption related to the installed electricity capacity of the power plant (tons/MW) as basic data. The author then determined the specific material consumptions, allocated to the electric energy generated during the lifetime, in different power plants. The calculation is carried out with the help of the usual annual peak load duration hours and the usual lifetime of the power plants. The results show that with the spread of solar and wind energy, the fossil energy sources previously needed for conventional power plants will remain inside the Earth, but in exchange for the production of new technological equipment from traditional structural materials (concrete, steel, aluminium, copper and plastic), the special need multiplies. If we compare the power plants using renewable energy with the electric energy produced during the life cycle of a nuclear power plant, the specific installed material requirement of a river hydropower plant is 37 times, that of an onshore wind farm it is 9.6 times, and that of an outdoor solar power park is 6.6 times higher. Another important difference is that wind turbines, solar panels and batteries also require rare materials that do not occur in Europe (e.g. gallium, indium, yttrium, neodymium, cobalt, etc.). This can lead to security risks in Europe in the long run.

2013 ◽  
Vol 18 (4) ◽  
pp. 1275-1281 ◽  
Author(s):  
M. Dzikuć

Abstract The paper presents a method of Life Cycle Assessment (LCA) to determine the impact of the heat produced on the environment. In addition, the usefulness of this method to assess the energy sector has been shown. This paper presents the impact of heat generation on the environment in coal power plants. A detailed analysis by the method of LCA is made to compare the environmental impact of heat generation in the Legnica Power Plant and Polkowice Power Plant. It is pointed to the difference in the results obtained. Moreover, the causes of the reported environmental impacts are discussed. Measures are identified which will help to reduce in the future the impact of the electricity produced on the environment during the production of heat.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1828 ◽  
Author(s):  
Izabela Piasecka ◽  
Patrycja Bałdowska-Witos ◽  
Józef Flizikowski ◽  
Katarzyna Piotrowska ◽  
Andrzej Tomporowski

Controlling the system—the environment of power plants is called such a transformation—their material, energy and information inputs in time, which will ensure that the purpose of the operation of this system or the state of the environment, is achieved. The transformations of systems and environmental inputs and their goals describe the different models, e.g., LCA model groups and methods. When converting wind kinetic energy into electricity, wind power plants emit literally no harmful substances into the environment. However, the production and postuse management stages of their components require large amounts of energy and materials. The biggest controlling problem during postuse management is wind power plant blades, followed by waste generated during their production. Therefore, this publication is aimed at carrying out an ecological, technical and energetical transformation analysis of selected postproduction waste of wind power plant blades based on the LCA models and methods. The research object of control was eight different types of postproduction waste (fiberglass mat, roving fabric, resin discs, distribution hoses, spiral hoses with resin, vacuum bag film, infusion materials residues, surplus mater), mainly made of polymer materials, making it difficult for postuse management and dangerous for the environment. Three groups of models and methods were used: Eco-indicator 99, IPCC and CED. The impact of analysis objects on human health, ecosystem quality and resources was controlled and assessed. Of all the tested waste, the life cycle of resin discs made of epoxy resin was characterized by the highest level of harmful technology impact on the environment and the highest energy consumption. Postuse control and management in the form of recycling would reduce the negative impact on the environment of the tested waste (in the perspective of their entire life cycle). Based on the results obtained, guidelines and models for the proecological postuse control of postproduction polymer waste of wind power plants blades were proposed.


2018 ◽  
Vol 874 ◽  
pp. 18-26
Author(s):  
Mila Tartiarini ◽  
Udisubakti Ciptomulyono

Waste water result from operating activities of Grati Combined Cycled Power Plant (CCPP) is significant amount and has potentially to be reutilized. A recycling unit as the pilot project has been applied in Grati CCPP PT Indonesia Power UP Perak Grati for capacity 4 tons/hour of service water product. Development plant of Grati CCPP up to year 2018 will produce more amounts of waste water, and potentially increase the pollution load in the unit area.Considering the use of alternative development for unit recycled waste water effluent from the Waste Water Treatment Plant (WWTP) has implications to the environmental and cost aspects, therefore a proper assessment to decide the alternative is needed. Proposed method of Life Cycle Assessment (LCA) is to measure the impact to the environment. And the Cost Benefit Analysis (CBA) is to measure the economic criteria. To integrate the results of the two methods, it is used and calculated by using Hierarcy Analytical Process (AHP).The result of the study about the environmental impact and economic analysis, the development of the recycling unit is required to process all waste water produced by power plants. Focus group by experts in power plant operation using AHP is based on the results of SimaPro 7.0 and CBA. The most beneficial result is with a single score of 0.2314 Pt / 1 ton of water service, the payback period of 2.5 years, 37.5% IRR and NPV US$ 88,577.23 and the MMF-RO unit for total capacity of 14 tons/hour has become the most alternative of development.


2018 ◽  
Vol 74 ◽  
pp. 11003
Author(s):  
Andreas Pramudianto

Basically each product or service has its own life cycle. Life Cycle Analysis Method can be used to assess the impact of an activity both production and service activities. Environmental Impact Assessment (EIA) or Analisis Mengenai Dampak Lingkungan (AMDAL) is one of the activities that must be fulfilled in order to obtain an environmental permit. EIA activities have a life cycle process that needs to be known and understood so that environmental permits can be obtained. Therefore this study aims to find out the use of the LCA method in EIA procedures. In addition, with the LCA method, EIA activities are expected to be well studied according to the function of this service. LCA can provide to reduce the least impact from environmental damage. This research will be useful for the development of environmental science, especially related to the study of environmental impacts, especially EIA. It is expected that the results of the study will provide a complete picture of the relevance of the LCA method with EIA and the benefits that can be taken. The results of this study will be an important recommendation for decision makers regarding the importance of EIA in development, especially sustainable development through the method used, namely LCA.


2018 ◽  
Vol 10 (8) ◽  
pp. 2917 ◽  
Author(s):  
José Lozano-Miralles ◽  
Manuel Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Rojas-Sola

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.


2020 ◽  
Vol 12 (19) ◽  
pp. 8242
Author(s):  
Jazmín Maciel Martínez ◽  
Eduardo Baltierra-Trejo ◽  
Paul Taboada-González ◽  
Quetzalli Aguilar-Virgen ◽  
Liliana Marquez-Benavides

Agave distillates, such as tequila and mezcal, are alcoholic spirits representative of Mexican culture. In recent years, the demand for mezcal has increased, and with it the requirement for raw materials, bringing with it a series of difficulties. The objective of this study was to evaluate the potential environmental impact and energy demand of the production of young craft mezcal from an endemic agave (Agave cupreata) found in the central and southern Pacific area of Mexico. The potential environmental impact of the mezcal studied was obtained through the life cycle analysis methodology using a midpoint approach by the ReCiPe method to calculate the potential environmental impact with SimaPro software (version 8.2.3.0., PRé Sustainability, Amersfoort, The Netherlands). The functional unit is a young craft mezcal bottle of 750 mL with 46% Vol. Alc. The stage of highest contribution to the environmental impact of mezcal was the manufacturing/processing, contributing 59.6% of them. The energy demand of the craft mezcal resulted in 163.8 MJ/bottle of 7.5 dl. The kg CO2eq in mezcal (1.7) is higher than beer (0.63) or white wine (1.01), but lower than whisky (2.25) or pisco (3.62). These findings could allow the search for alternatives for the development of sustainable production.


2005 ◽  
Vol 895 ◽  
Author(s):  
Antonia Moropoulou ◽  
Christopher Koroneos ◽  
Maria Karoglou ◽  
Eleni Aggelakopoulou ◽  
Asterios Bakolas ◽  
...  

AbstractOver the years considerable research has been conducted on masonry mortars regarding their compatibility with under restoration structures. The environmental dimension of these materials may sometimes be a prohibitive factor in the selection of these materials. Life Cycle Assessment (LCA) is a tool that can be used to assess the environmental impact of the materials. LCA can be a very useful tool in the decision making for the selection of appropriate restoration structural material. In this work, a comparison between traditional type of mortars and modern ones (cement-based) is attempted. Two mortars of traditional type are investigated: with aerial lime binder, with aerial lime and artificial pozzolanic additive and one with cement binder. The LCA results indicate that the traditional types of mortars are more sustainable compared to cementbased mortars. For the impact assessment, the method used is Eco-indicator 95


2016 ◽  
Vol 834 ◽  
pp. 34-39
Author(s):  
Cătălin Gheorghiță ◽  
Vlad Gheorghiță

Eco-audit is a tool to find the environmental impact of the product across all life cycle stages and for identify the problems in all aspects of a supply chain, from extraction of raw materials to manufacturing, distribution, use and disposal. The purpose of an analysis of a product is to establish the embodied energy, water usage, annual CO2 to atmosphere, carbon foot print, recycle fraction in current supply, toxicity, approximate processing energy and sustainability criteria. Knowledges to guide design decisions are needed to minimize or eliminate adverse eco-impacts. In eco-audit analysis, will be created material charts, processes selection and life cycle analysis allowing alternative design choices to meet the engineering requirements and reduce the environmental impact. The application presented in this paper uses only environmentally friendly properties of Ashby's database.


2019 ◽  
Vol 9 (2) ◽  
pp. 231 ◽  
Author(s):  
Izabela Piasecka ◽  
Andrzej Tomporowski ◽  
Józef Flizikowski ◽  
Weronika Kruszelnicka ◽  
Robert Kasner ◽  
...  

This study deals with the problems connected with the benefits and costs of an offshore wind power plant in terms of ecology. Development prospects of offshore and land-based wind energy production are described. Selected aspects involved in the design, construction, and operation of offshore wind power plant construction and operation are presented. The aim of this study was to analyze and compare the environmental impact of offshore and land-based wind power plants. Life cycle assessment analysis of 2-MW offshore and land wind power plants was made with the use of Eco-indicator 99 modeling. The results were compared in four areas of impact in order to obtain values of indexes for nonergonomic (impact on/by operator), nonfunctional (of/on the product), nonecological (on/by living objects), and nonsozological impacts (on/by manmade objects), reflecting the extent of threat to human health, the environment, and natural resources. The processes involved in extraction of fossil fuels were found to produce harmful emissions which in turn lead to respiratory system diseases being, thus, extremely dangerous for the natural environment. For all the studied areas, the impact on the environment was found to be higher for land-based wind power plants than for an offshore wind farm.


2021 ◽  
Vol 13 (12) ◽  
pp. 6657
Author(s):  
Brett Fulford ◽  
Karen Mezzi ◽  
Andy Whiting ◽  
Simon Aumônier

The Breezhaler® dry powder inhaler (DPI) has a low carbon footprint compared with other inhalation therapies, consistent with the literature on other DPIs. This life-cycle assessment was conducted in France, Germany, the UK, and Japan using a “cradle-to-grave” technique to evaluate six environmental impact categories (global warming potential; acidification; ozone depletion; use of resource, minerals, and metals; eco-toxicity; and freshwater use) associated with the use of the Breezhaler®. Three variants of the Breezhaler® (30-day packs with and without the digital companion and a 90-day pack without the digital companion) were evaluated to identify major hotspots in the device life-cycle and to provide realistic solutions to reduce the environmental impact. Although no single life-cycle stage dominated the climate change impact of the 30-day device with the digital companion, the inhaler’s raw materials and packaging contributed to 96% of the resource depletion impact for the 30-day device without the digital companion. For the 90-day device without the digital companion, packaging contributed 42–62% of the impact across all categories. Overall, the Breezhaler® inhaler with the 90-day pack had the lowest environmental impact. The environmental impact of the device did not vary significantly among the considered markets. Further studies are needed to assess the impact of active pharmaceutical ingredients and improvement in clinical outcomes on the environment.


Sign in / Sign up

Export Citation Format

Share Document