Exergetic life cycle assessment of cement production process with waste heat power generation

2014 ◽  
Vol 88 ◽  
pp. 684-692 ◽  
Author(s):  
Xiuwen Sui ◽  
Yun Zhang ◽  
Shuai Shao ◽  
Shushen Zhang
2014 ◽  
Vol 599 ◽  
pp. 324-327 ◽  
Author(s):  
Jia Ping Cui ◽  
Yu Liu ◽  
Zhi Hong Wang ◽  
Li Li Zhao ◽  
Fei Fei Shi ◽  
...  

The environmental impacts of cement production using two pre-drying processes, i.e., coal-fired pre-drying process and pre-drying process by waste heat from kiln tail process were analyzed and compared through life cycle assessment (LCA). The results show that the energy consumption, GWP, AP, POCP, HT and EP of pre-drying process by waste heat from kiln tail are about 1%, 2%, 5.2%, 5% ,3.5% and 3.8% lower than coal-fired process; therefore the application of pre-drying process by waste heat from kiln tail has obvious environmental benefits.


2015 ◽  
Vol 814 ◽  
pp. 411-417
Author(s):  
Yao Li ◽  
Yu Liu ◽  
Fei Fei Shi ◽  
Zhi Hong Wang ◽  
Xian Zheng Gong

The carbon emission and energy consumption of using slag as a secondary raw material in cement production was quantified and analyzed in this study. Moreover, the carbon emission reduction and energy saving potential of slag-based cement (SBC) production were identified based on the comparative analysis between SBC and traditional Portland cement (TPC). The results showed that the carbon emission of SBC is about 6.73%, which was lower than that of TPC. Compared with TPC, the energy consumption of SBC is slightly increased by 2.05%. In addition, it was found that the combustion of coal and the power generation were the main sources for carbon emission in the life cycle of slag utilization, which account for 83.39% and 10.16% of the total carbon emission. Therefore, reducing the consumption of energy and increasing the recovery rate of waste heat in cement production were the most effective methods to improve the environmental performance of SBC. In addition, the improvement potential analysis was carried out for SBC. The results indicated that if the recovery rate of waste heat could reach to that of the international advanced level (15.6%), the carbon emission and energy consumption of SBC would be reduced by about 2.20% and 5.71%, respectively. If the proportion of renewable energy utilizationin power generation increased to that of the average international level, the carbon emission and energy consumption of SBC would be declined by 5.26% and 9.35% respectively.


2018 ◽  
Vol 164 ◽  
pp. 508-517 ◽  
Author(s):  
Qingqiang Wang ◽  
Yue Ma ◽  
Shuyuan Li ◽  
Jili Hou ◽  
Jian Shi

Sign in / Sign up

Export Citation Format

Share Document