Rigid multibody dynamic modeling for a semi-submersible wind turbine

2021 ◽  
Vol 244 ◽  
pp. 114399
Author(s):  
Vahid Bagherian ◽  
Mohammad Salehi ◽  
Mojtaba Mahzoon
Author(s):  
Ryan Schkoda ◽  
Konstantin Bulgakov ◽  
Kalyan Chakravarthy Addepalli ◽  
Imtiaz Haque

This paper describes the system level, dynamic modeling and simulation strategy being developed at the Wind Turbine Drivetrain Testing Facility (WTDTF) at Clemson University’s Restoration Institute in North Charleston, SC, USA. An extensible framework that allows various workflows has been constructed and used to conduct preliminary analysis of one of the facility’s test benches. The framework dictates that component and subsystem models be developed according to a list of identified needs and modeled in software best suited for the particular task. Models are then integrated according to the desired execution target. This approach allows for compartmentalized model development which is well suited for collaborative work. The framework has been applied to one of the test benches and has allowed researches to begin characterizing its behavior in the time and frequency domain.


2012 ◽  
Vol 12 (06) ◽  
pp. 1250049 ◽  
Author(s):  
A. RASTI ◽  
S. A. FAZELZADEH

In this paper, multibody dynamic modeling and flutter analysis of a flexible slender vehicle are investigated. The method is a comprehensive procedure based on the hybrid equations of motion in terms of quasi-coordinates. The equations consist of ordinary differential equations for the rigid body motions of the vehicle and partial differential equations for the elastic deformations of the flexible components of the vehicle. These equations are naturally nonlinear, but to avoid high nonlinearity of equations the elastic displacements are assumed to be small so that the equations of motion can be linearized. For the aeroelastic analysis a perturbation approach is used, by which the problem is divided into a nonlinear flight dynamics problem for quasi-rigid flight vehicle and a linear extended aeroelasticity problem for the elastic deformations and perturbations in the rigid body motions. In this manner, the trim values that are obtained from the first problem are used as an input to the second problem. The body of the vehicle is modeled with a uniform free–free beam and the aeroelastic forces are derived from the strip theory. The effect of some crucial geometric and physical parameters and the acting forces on the flutter speed and frequency of the vehicle are investigated.


2020 ◽  
Vol 145 ◽  
pp. 1292-1305 ◽  
Author(s):  
Zhanwei Li ◽  
Binrong Wen ◽  
Kexiang Wei ◽  
Wenxian Yang ◽  
Zhike Peng ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zheng Li ◽  
Tianhe Zhang ◽  
Yang Chen ◽  
Lijuan Song

This article studies the effects of some basic parameters of a parallel-axis helix gear stage on wind turbine gearbox vibration in a case study: a multibody dynamic model is constructed to simulate the drive train of a faulted multistage wind turbine gearbox with serious vibrations. The significant vibration behaviour of the drive train for typical excitations is calculated, and the results according to specified geometric parameters of the gears are analysed in detail to investigate effective solutions for vibration reduction. The results indicate that the helix angle and numbers of teeth of a gear pair are the most significant factors for solving the problem. The effectiveness of the proposed solutions and relevant mechanisms are discussed and validated by a prototype vibration test.


Sign in / Sign up

Export Citation Format

Share Document