MULTIBODY DYNAMIC MODELING AND FLUTTER ANALYSIS OF A FLEXIBLE SLENDER VEHICLE

2012 ◽  
Vol 12 (06) ◽  
pp. 1250049 ◽  
Author(s):  
A. RASTI ◽  
S. A. FAZELZADEH

In this paper, multibody dynamic modeling and flutter analysis of a flexible slender vehicle are investigated. The method is a comprehensive procedure based on the hybrid equations of motion in terms of quasi-coordinates. The equations consist of ordinary differential equations for the rigid body motions of the vehicle and partial differential equations for the elastic deformations of the flexible components of the vehicle. These equations are naturally nonlinear, but to avoid high nonlinearity of equations the elastic displacements are assumed to be small so that the equations of motion can be linearized. For the aeroelastic analysis a perturbation approach is used, by which the problem is divided into a nonlinear flight dynamics problem for quasi-rigid flight vehicle and a linear extended aeroelasticity problem for the elastic deformations and perturbations in the rigid body motions. In this manner, the trim values that are obtained from the first problem are used as an input to the second problem. The body of the vehicle is modeled with a uniform free–free beam and the aeroelastic forces are derived from the strip theory. The effect of some crucial geometric and physical parameters and the acting forces on the flutter speed and frequency of the vehicle are investigated.

1986 ◽  
Vol 108 (2) ◽  
pp. 141-145 ◽  
Author(s):  
L. J. Everett ◽  
M. McDermott

A convenient means for applying vector mathematics to variational problems is presented. The total and relative variations of a vector are defined and results which follow from these definitions are developed and proved. These results are then used to express the variation of a functional using vector techniques rather than the classical scalar or matrix techniques. The simple problems of deriving equations of motion for a rigid body and for a rigid double pendulum are presented as examples of the technique. The key advantages of the method are that (1) it allows the investigator who is familiar and proficient with vector techniques to apply these skills to variational problems and (2) it greatly simplifies the application of variational techniques to problems which include both rigid body motions and elastic deformations. This is accomplished by providing the techniques necessary for computing the variation of a vector defined in a moving coordinate system without using coordinate transformations.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
T. S. Amer

In this paper, we will focus on the dynamical behavior of a rigid body suspended on an elastic spring as a pendulum model with three degrees of freedom. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity. The relative periodic motions of this model are considered. The governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates. The numerical solutions are investigated using the fourth-order Runge-Kutta algorithms through Matlab packages. These solutions are represented graphically in order to describe and discuss the behavior of the body at any instant for different values of the physical parameters of the body. The obtained results have been discussed and compared with some previous published works. Some concluding remarks have been presented at the end of this work. The importance of this work is due to its numerous applications in life such as the vibrations that occur in buildings and structures.


2019 ◽  
Vol 24 (2) ◽  
pp. 175-180
Author(s):  
Vladimir Dragoş Tătaru ◽  
Mircea Bogdan Tătaru

Abstract The present paper approaches in an original manner the dynamic analysis of a wheel which climbs on an inclined plane under the action of a horizontal force. The wheel rolls and slides in the same time. The two movements, rolling and sliding are considered to be independent of each other. Therefore we are dealing with a solid rigid body with two degrees of freedom. The difficulty of approaching the problem lies in the fact that in the differential equations describing the motion of the solid rigid body are also present the constraint forces and these are unknown. For this reason they must be eliminated from the differential equations of motion. The paper presents as well an original method of the constraint forces elimination.


2021 ◽  
Vol 18 (1) ◽  
pp. 136
Author(s):  
V. Tanriverdi

Euler derived equations for rigid body rotations in the body reference frame and in the stationary reference frame by considering an infinitesimal part of the rigid body.Another derivation is possible, and it is widely used: transforming torque-angular momentum relation to the body reference frame.However, their equivalence is not shown explicitly.In this work, for a rigid body with different moments of inertia, we calculated Euler equations explicitly in the body reference frame and in the stationary reference frame and torque-angular momentum relation.We also calculated equations of motion from Lagrangian.These calculations show that all four of them are equivalent.


Author(s):  
L. D. Akulenko ◽  
D. D. Leshchenko ◽  
T. A. Kozachenko

Perturbed rotations of a rigid body close to the regular precession in the Lagrangian case under the action of a restoring moment depending on slow time and nutation angle, as well as a perturbing moment slowly varying with time, are studied. The body is assumed to spin rapidly, and the restoring and perturbing moments are assumed to be small with a certain hierarchy of smallness of the components. A first approximation averaged system of equations of motion for an essentially nonlinear two-frequency system is obtained in the nonresonance case. Examples of motion of a body under the action of particular restoring, perturbing, and control moments of force are considered.


1976 ◽  
Vol 98 (4) ◽  
pp. 1306-1312 ◽  
Author(s):  
B. S. Thompson ◽  
A. D. S. Barr

A variational principle is presented that may be used for setting up the equations describing the elastodynamic motion of planar linkages in which all the members are considered to be flexible. These systems are modeled as a set of continua in which elastic deformations are superimposed on gross rigid-body motions. Displacement continuity at pin joints, or any other special constraints that are peculiar to the linkage being analyzed, are incorporated by the use of Lagrange multipliers. By permitting independent variations of the stress, strain, displacement, and velocity parameters for each link approximate equations of motion, boundary and compatibility conditions for the complete mechanism may be systematically constructed. As an illustrative example, the derivation of the problem definition for a flexible slider-crank mechanism is given.


1982 ◽  
Vol 104 (1) ◽  
pp. 39-50 ◽  
Author(s):  
J. M. McCarthy ◽  
B. Roth

This paper develops relationships between the instantaneous invariants of a motion and the local shape of the trajectories generated during the motion. We consider the point trajectories generated by planar and spherical motions and the line trajectories generated by spatial motion. Those points or lines which generate special trajectories are located on (and define) so-called boundary loci in the moving body. These boundary loci define regions, within the body, for which all the points or lines generate similarly shaped trajectories. The shapes of these boundaries depend directly upon the invariants of the motion. It is shown how to qualitatively determine the fundamental trajectory shapes, analyze the effect of the invariants on the boundary loci, and how to combine these results to visualize the motion trajectories to the third order.


Author(s):  
Selima Bennaceur ◽  
Naoufel Azouz ◽  
Djaber Boukraa

This paper presents an efficient modelling of airships with small deformations moving in an ideal fluid. The formalism is based on the Updated Lagrangian Method (U.L.M.). This formalism proposes to take into account the coupling between the rigid body motion and the deformation as well as the interaction with the surrounding fluid. The resolution of the equations of motion is incremental. The behaviour of the airship is defined relatively to a virtual non-deformed reference configuration moving with the body. The flexibility is represented by a deformation modes issued from a Finite Elements Method analysis. The increment of rigid body motion is represented similarly by rigid modes. A modal synthesis is used to solve the general system equations of motion. Time constant matrices appears (i.e. mass and structural stiffness matrices), and we show a convenient technique to actualise the time dependant matrices.


Sign in / Sign up

Export Citation Format

Share Document