A hybrid vapor chamber heat sink incorporating a vapor chamber and liquid cooling channel with outstanding thermal performance and hydraulic characteristics

2021 ◽  
Vol 244 ◽  
pp. 114499
Author(s):  
Huawei Wang ◽  
Pengfei Bai ◽  
Ruipeng Cai ◽  
Yuhao Luo ◽  
Xingliang Chen ◽  
...  
Author(s):  
Koichi Mashiko ◽  
Masataka Mochizuki ◽  
Yuji Saito ◽  
Yasuhiro Horiuchi ◽  
Thang Nguyen ◽  
...  

Recently energy saving is most important concept for all electric products and production. Especially, in Data-Center cooling system, power consumption of current air cooling system is increasing. For not only improving thermal performance but also reducing electric power consumption of this system, liquid cooling system has been developed. This paper reports the development of cold plate technology and vapor chamber application by using micro-channel fin. In case of cold plate application, micro-channel fin technology is good for compact space design, high thermal performance, and easy for design and simulation. Another application is the evaporating surface for vapor chamber. The well-known devices for effective heat transfer or heat spreading with the lowest thermal resistance are heat pipes and vapor chamber, which are two-phase heat transfer devices with excellent heat spreading and heat transfer characteristics. Normally, vapor chamber is composed of sintered power wick. Vapor chamber container is mechanically supported by stamped pedestal or wick column or solid column, but the mechanical strength is not enough strong. So far, the application is limited in the area of low strength assembly. Sometime the mechanical supporting frame is design for preventing deformation. In this paper, the testing result of sample is described that thermal resistance between the heat source and the ambient can be improved approximately 0.1°C/W by using the micro-channel vapor chamber. Additionally, authors presented case designs using vapor chamber for cooling computer processors, and proposed ideas of using micro-channel vapor chamber for heat spreading to replace the traditional metal plate heat spreader.


Author(s):  
Harish Chengalvala ◽  
Amy S. Fleischer ◽  
G. F. Jones

The performance enhancements and footprint decreases of advanced electronic devices result in soaring power densities which may in turn lead to elevated operating temperatures. As elevated device temperatures lead to decreased device reliability and increased thermal stresses, it is necessary to employ aggressive thermal management techniques to maintain an acceptable junction temperature at high power densities. For this reason, interest is growing in a variety of liquid cooling techniques This study analyzes an advanced engineered-material heat sink which provides significant improvements in thermal management strategies for advanced electronics. The heat sink consists of a very large number of small cross-section fins fabricated from carbon pitch fibers. For these carbon pitch fibers, the high thermal conductivity reduces the temperature drop along the length of the fin creating a longer effective fin length than for copper fins. The longer length results in more heat transfer surface area and a more effective heat sink. In liquid cooling, the rough surface of the fin will provide multiple bubble nucleation sites, strongly promoting active two-phase heat transfer over the entire fin surface. This surface enhancement is expected to lead to significant increases in performance over conventional heat sinks. This experimental analysis characterizes the thermal performance of the carbon-fiber heat sink in two-phase closed loop thermosyphon operation using FC72 as the operating fluid. The influence of power load, thermosyphon fill volume and condenser operating temperature on the overall thermal performance is examined. The results of this experiment provide significant insight into the possible implementation and benefits of carbon fiber heat sink technology in two-phase flow leading to significant improvements in thermal management strategies for advanced electronics.


Author(s):  
Hung-Yi Li ◽  
Ming-Hung Chiang ◽  
Chih-I Lee ◽  
Wen-Jei Yang

This work experimentally studies the thermal performance of plate-fin vapor chamber heat sinks using infrared thermography. The effects of the fin width, the fin height and the Reynolds number on the thermal performance are considered. The results show that generated heat is transferred more uniformly to the base plate by a vapor chamber heat sink than by a similar aluminum heat sink. Therefore, the maximum temperature is effectively reduced. The overall thermal resistance of the vapor chamber heat sink declines as the Reynolds number increases, but the strength of the effect falls. The effect of the fin dimensions on the thermal performance is stronger at a lower Reynolds number.


2019 ◽  
Vol 50 (8) ◽  
pp. 757-772 ◽  
Author(s):  
Yicang Huang ◽  
Hui Li ◽  
Shengnan Shen ◽  
Yongbo Xue ◽  
Mingliang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document