Quantification of realistic performance expectations from trigeneration CAES-ORC energy storage system in real operating conditions

2021 ◽  
Vol 249 ◽  
pp. 114828
Author(s):  
Hamid Reza Rahbari ◽  
Ahmad Arabkoohsar ◽  
Mads Pagh Nielsen ◽  
Brian Vad Mathiesen ◽  
Henrik Lund
Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
Yuanyuan Chen ◽  
Zilong Yang ◽  
Yibo Wang

The environment for practical applications of an energy storage system (ESS) in a microgrid system is very harsh, and therefore actual operating conditions become complex and changeable. In addition, the signal of the ESS sampling process contains a great deal of system and measurement noise, the sampled current fluctuates significantly, and also has high frequency. In this case, under such conditions, it is difficult to accurately estimate the state of charge (SOC) of the batteries in the ESS by common estimation methods. Therefore, this study proposes a compound SOC estimation method based on wavelet transform. This algorithm is very suitable for microgrid systems with large current, frequent fluctuating conditions, and high noise interference. The experimental results and engineering data show that the relative error of the method is 0.5%, which is much lower than the extend Kalman filter (EKF) based on wavelet transform.


2021 ◽  
Vol 80 (4) ◽  
pp. 216-224
Author(s):  
V. L. Nezevak

Considered are the issues of using electric energy storage system in the traction power supply of direct current of a single-track section. An overview of the main directions of domestic and foreign research in the field of using these systems to increase the capacity and energy efficiency of power supply systems is given. Modeling the operation of energy storage system in traction power supply is based on the calculation of load graphs within the boundaries of inter-substation zones, formed depending on the conditions for the passage of trains and traction load on the railway section. The main provisions of the method for choosing locations and determining the parameters of energy storage system in traction power supply are considered. On the example of one of the inter-substation zones of the Sverdlovsk railway, the influence of the power of the active sectioning station on the increase in the minimum voltage level at the pantograph of the electric rolling stock is shown. The graphs of the degree of charge and the corresponding frequency distributions are given, which make it possible to evaluate the operating conditions of the electric energy storage system depending on the conditions for the formation of the traction load, as well as the graphs of the load of the electric energy storage system and the corresponding charging characteristics for the operating conditions at the sectioning post. On the example of the section under consideration, the dependence of the discharge depth of the electric energy storage system on the nominal energy intensity is shown. Based on the results of calculations, an evaluation was made of the options for passing train batches in the even and odd direction in comparison with the schedule of the performed train operation. The range of variation of the nominal values of power and energy intensity of the electric energy storage system is obtained. Comparison of the accumulation system parameters for single- and double-track sections of railways, including those with a predominance of passenger traffic, is carried out.


1996 ◽  
Vol 118 (1) ◽  
pp. 50-57 ◽  
Author(s):  
A. A. Jalalzadeh-Azar ◽  
W. G. Steele ◽  
G. A. Adebiyi

A model is developed and experimentally verified to study the heat transfer in a high-temperature packed bed thermal energy storage system utilizing zirconium oxide pellets. The packed bed receives flue gas at elevated temperatures varying with time during the storage process and utilizes air for the recovery process. Both convection and radiation are included in the model of the total heat transfer between the gas and the pellets. It is found that thermal radiation and intraparticle conduction do not play a major role in the overall heat transfer in the packed bed under the specified operating conditions. An uncertainty analysis is performed to investigate the propagation of the uncertainties in the variables to the overall uncertainty in the model predictions and the experimental results.


2019 ◽  
Vol 8 (4) ◽  
pp. 1772-1779

In the research work, impactness of Renewable Energy source like Wind Energy is reinforced to enhance the dynamic performance of Thermal and Hydro power plant under various operating conditions in which steam act as a major contributor for generation of electricity and rest of the generation through water. This technique is helpful in agricultural as well as islet spaces. The uneven generation of power will cause fluctuation in load followed by large disturbance in frequency of power system. To overcome this nature of fluctuations, wind energy will offer and consume instantly the true and apparent powers. The execution and it’s testing are exhausted in a convenient MATLAB/Simulink condition with the application of step load and a continuing load perturbation of 1% within the system and whose results exposed that involvement of wind energy storage unit in the hybrid Thermal Hydro power system enhance transient performance of each thermal & hydro sides.


Sign in / Sign up

Export Citation Format

Share Document