The cost of clean energy transition in rural China: Evidence based on marginal treatment effects

2021 ◽  
Vol 97 ◽  
pp. 105167
Author(s):  
Meng Li ◽  
Tianyu Jin ◽  
Shenglong Liu ◽  
Shaojie Zhou
2018 ◽  
Vol 29 (4) ◽  
pp. 456-472 ◽  
Author(s):  
Wenli Qiang ◽  
Shuwen Niu ◽  
Xiaojie Liu ◽  
Xiang Wang ◽  
Zhuo Jia ◽  
...  

How to cut down power generation cost is an important issue during energy system transformation. This study examines the pathway of China’s coal-fired and clean power’s unit generation cost changes during 2007–2015 and predicts the change trends of each type of power between 2016 and 2025. The results show that the cost of coal-fired power will increase to 0.50–0.73 Yuan/kWh in 2025 because of the stricter environmental regulations and the establishment of a nationwide carbon emission trading market. Conversely, the cost of clean energy power, with the exception of hydropower, shows a decreasing trend between 2007 and 2025, with the costs of nuclear power, solar power, and wind power declining from 0.40, 4.34, and 0.56 Yuan/kWh to 0.33, 0.31, and 0.49 Yuan/kWh, respectively. However, the cost of hydropower displays an increasing trend from 0.22 to 0.26 Yuan/kWh during 2007–2025 due to increases in construction costs. Considering the external cost increases applying to coal-fired power and the declining trend caused by the learning rates of renewable power, the cost of all the clean energy power will be lower than the costs of coal-fired power before 2025. The cost sharing of coal-fired power is also analyzed in this study. However, there are a number of relevant economic and policy measures that are needed to be taken by the government to fulfill this transformation.


2021 ◽  
Vol 14 (2) ◽  
pp. 75-87
Author(s):  
Elena Cima

Abstract In 2017, the Energy Charter Treaty (ECT) began a modernization process aimed at updating, clarifying, and modernizing a number of provisions of the Treaty. Considering the scope of application of the Treaty—cooperation in energy trade, transit, and investment—there is hardly any doubt that the modernization kicked off in 2017 offers a springboard for constructive reform and a unique opportunity to bring the Treaty closer in line with the objectives of the Paris Agreement. Although none of the items selected by the Energy Charter Conference and open for discussion and reform mention climate change or clean energy, a careful analysis of the relevant practice in both treaty drafting and adjudication can provide valuable insights as to how to steer the discussions on some of the existing items in a climate-friendly direction. The purpose of this article is to rely on this relevant practice to explore promising avenues to ‘retool’ the Treaty for climate change mitigation, in other words, to imagine a Treaty that would better reflect climate change concerns and clean energy transition goals.


Author(s):  
Muntasir Murshed ◽  
Zahoor Ahmed ◽  
Md Shabbir Alam ◽  
Haider Mahmood ◽  
Abdul Rehman ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 891-900
Author(s):  
Iban Lizarralde ◽  
Audrey Abi Akle ◽  
Mikhail Hamwi ◽  
Basma Samir

AbstractCurrent development of renewable energy systems (RES) is characterised by an increasing participation of citizens in the upstream decision-making process. These citizens can be future users of the RES but also members of a Renewable Energy Community that develop RES. They can be at the same time Renewable Energy producer, investor and consumer. Moreover, several type of businesses and terms are used to cope with social innovations within the energy sector: local renewable projects, sustainable energy communities or community of renewable energy production. So, actors' engagement opens new solutions for designers who are induced to share alternatives before making decisions. They usually impose constraints since the early phases of the design process. This approach implies for designers to consider new criteria related to citizens motivations and barriers. This paper presents a study to define the main factors that drive people to contribute in social innovation schemes for clean-energy transition. After a state of the art, a survey about 6 main factors and 18 criteria is presented. The analysis based on the responses from 34 participants (i.e. experts) reveals 2 most important factors of motivation and 2 principal barrier sources.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1787
Author(s):  
Pilar Gargallo ◽  
Luis Lample ◽  
Jesús A. Miguel ◽  
Manuel Salvador

This paper analyzes the co-movements of prices of fossil fuels, energy stock markets and EU allowances. This analysis is conducted in order to identify the spillover effect of volatility and correlation among these financial markets, and to provide a scientific basis that shows the interest of incorporating sustainable assets in the design of minimum risk strategies of investment. To achieve this goal, we have used a Vector Autoregressive-Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroscedasticity (VAR-DCC-GARCH) model that also incorporates a stock index of industrial companies as a leading indicator of the level of economic activity. In addition, the paper conducts an impulse response analysis to determine how unexpected shocks to prices are propagated along time, and, in particular, how they affect prices of the others, both in mean, variance and correlation. Therefore, the results of this one- and two-dimensional analysis allow for the study of short and long run dynamics of the relationship among those prices, thus, providing greater meaning and information for investors, which has implications for building their portfolios. The analyzed period was from January 2010 to February 2021, so that the data include half of phase II, full phase III and the onset of phase IV of the EU ETS, as well as the COVID-19 outbreak in the European context. We also analyzed whether the EUA price impulses the demand of clean energy stocks, which has important implications for the objective of triggering the investment in clean energy. Our results show the transmission mechanism of all of those prices, which are relevant not only for investors but also for policymakers to construct an early-warning system, revealing the most important transmission channels. Moreover, from an investment viewpoint, we observe a decline in dirty energies and a rise in the clean energy market, which might be an indication of the progress towards the energy transition to renewables sources within a circular economy perspective. Therefore, this shows that the EU ETS is achieving its goals, and that clean energy companies, aligned with their role towards socially responsible initiatives, are also gaining acceptance in terms of investments, which would be beneficial for the environment.


2021 ◽  
Author(s):  
Renata Barros ◽  
Kris Piessens ◽  
the GeoConnect³d team

<p>The transition towards a clean and low carbon energy system in Europe will increasingly rely on the use of the subsurface. Despite the vastness of subsurface space, only a fraction of it is suitable for the exploitation of geo-resources. The distribution and fitting combination of required conditions is determined by geological processes. We are, therefore, constrained in where we can develop resources and capacities. Moreover, increased subsurface use in a restricted area will inevitably lead to high chances of interferences and conflicts of interest. This means that sound geological information is essential to optimise the subsurface contribution to a safe and efficient energy transition.</p><p>Within this scope, the main goal of the GeoConnect³d project is to convert existing geological data into an information system that can be used for various geo-applications, decision-making, and subsurface spatial planning. This is being accomplished through the innovative structural framework model, which reorganises, contextualises, and adds value to geological data. The model is primarily focused on geological limits, or broadly planar structures that separate a given geological unit from its neighbouring units. It also includes geomanifestations, highlighting any distinct local expression of ongoing or past geological processes. These manifestations, or anomalies, often point to specific geologic conditions and, therefore, can be important sources of information to improve geological understanding of an area.</p><p>Geological data in this model are composed of spatial data at different scales, with a one-to-one link between geometries and their specific attributes (including uncertainties), and of semantic data, with data organised conceptually and categorised and/or linked using SKOS hierarchical and generic schemes. Concepts and geometries are linked by a one-to-many relationship. The combination of these elements then results in a multi-scale, harmonised and robust model.</p><p>The structural framework-geomanifestations methodology has now been applied to different areas in Europe. The focus on geological limits brings various advantages, such as displaying geological information in an explicit, and therefore more understandable, way, and simplifying harmonisation efforts in large-scale geological structures crossing national borders. The link between spatial and semantic data is the essential step adding conceptual definitions and interpretations to geometries. Additionally, geomanifestation data successfully validates or points to inconsistencies in specific areas of the model, which can then be further investigated.</p><p>The model demonstrates it is possible to gather existing geological data into a comprehensive knowledge system. We consider this as the way forward towards pan-European integration and harmonisation of geological information. Moreover, we identify the great potential of the structural framework model as a toolbox to communicate geosciences beyond our specialised community. This is an important step to support subsurface spatial planning towards a clean energy transition by making geological information available to all stakeholders involved.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.</p>


2021 ◽  
Vol 65 (6) ◽  
pp. 79-85
Author(s):  
E. Telegina

Received 13.01.2021. The coronavirus pandemic has accelerated global economic, technological and social transformation, including the energy sector, and has given the impetus to energy transition from organic fuels to clean energy sources. Though oil will remain an important energy resource in the global energy balance, in the long run renewables will become the leading energy. The European Union and China are the leaders in implementation of energy transition strategies from fossil to clean energy. The transformation in the energy market has affected dramatically the relations between producers and consumers, who now actively determine the consumption trends (for example, green energy, electric vehicles, etc.). Distributed generation and blockchain in power industry enable the consumers to play an active part in the electricity production and distribution chains. Digital transformation and climate agenda are changing the structure of energy business from vertically integrated companies to knowledge-intensive networks. Investors almost unanimously vote for renewable energy. The largest oil and gas companies change their long-term strategies and transform into energy holdings with the prevailing share of renewables in the business structure. Hydrogen attracts particular attention as a promising energy source. The EU plans to develop hydrogen transport infrastructure. For its part, Russia has the ability to supply hydrogen to the European market through the existing gas pipelines. Coronacrisis accelerated the development of online services, artificial intelligence, and distant work. Education and telemedicine received a powerful impetus for further development. Еducation becomes continuous process in the digital world. New educational ecosystems in which skills and competencies are worked out on an interdisciplinary basis are formed. Digital transformation meets the expectations of the generation Z, which in the coming decades will become economically active and will dominate in social and economic agenda. Digitalization, adaptive nature-like technologies, environmentally friendly energy resources, flexible horizontal network between market participants are already a post-COVID reality.


Sign in / Sign up

Export Citation Format

Share Document