Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems

Energy ◽  
2014 ◽  
Vol 66 ◽  
pp. 128-138 ◽  
Author(s):  
Jianhua Zhang ◽  
Yeli Zhou ◽  
Rui Wang ◽  
Jinliang Xu ◽  
Fang Fang
2002 ◽  
Vol 124 (2) ◽  
pp. 429-436 ◽  
Author(s):  
T. C. Hung

The purpose of this study is to find a maximum work output from various combinations of thermodynamic cycles from a viewpoint of the cycle systems. Three systems were discussed in this study: a fundamental combined cycle and two other cycles evolved from the fundamental dual combined cycle: series-type and parallel-type triple cycles. In each system, parametric studies were carried out in order to find optimal configurations of the cycle combinations based on the influences of tested parameters on the systems. The study shows that the series-type triple cycle exhibits no significant difference as compared with the combined cycle. On the other hand, the efficiency of the parallel-type triple cycle can be raised, especially in the application of recovering low-enthalpy-content waste heat. Therefore, by properly combining with a steam Rankine cycle, the organic Rankine cycle is expected to efficiently utilize residual yet available energy to an optimal extent. The present study has pointed out a conceptual design in multiple-cycle energy conversion systems.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 151587-151594
Author(s):  
Mifeng Ren ◽  
Mingyue Gong ◽  
Mingming Lin ◽  
Jianhua Zhang

Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

The optimization of energy conversion systems is of great significance in the utilization of low-grade heat. This paper presents an analysis of 6 working fluids in 12 thermodynamic cycles to optimize the energy conversion systems. The optimal exergy efficiency of the system is dependent on the type of the thermodynamic cycle, the choice of appropriate working fluid, and the working conditions. A zeotropic mixture of R134a and R245fa shows advantages in energy conversion process, as well as its heat exchange with the heat source and heat sink. The exergy efficiency of a 0.5R134a/0.5R245fa-based supercritical Rankine cycle system is 0.643–0.689 for a turbine inlet temperature of 415–445K, which is about 30% improvement over the exergy efficiency of 0.491–0.521 for a pure R32-based organic Rankine cycle under the same temperature limits. Furthermore, the 0.5R134a/0.5R245fa mixture saves more than 60% of the cooling water during the condensation process than the pure R32, R134a and R245fa.


Author(s):  
Guohui Zhu ◽  
Jingping Liu ◽  
Jianqin Fu ◽  
Shuqian Wang

A combined organic Rankine cycle (ORC) was proposed for both engine coolant energy recovery (CER) and exhaust energy recovery (EER), and it was applied to a gasoline direct injection (GDI) engine to verify its waste heat recovery (WHR) potential. After several kinds of organic working medium were compared, R123 was selected as the working fluid of this ORC. Two cycle modes, low-temperature cycle and high-temperature cycle, were designed according to the evaporation way of working fluid. The working fluid is evaporated by coolant heat in low-temperature cycle but by exhaust heat in high-temperature cycle. The influence factors of cycle performance and recovery potential of engine waste heat energy were investigated by cycle simulation and parametric analysis. The results show that recovery efficiency of waste heat energy is influenced by both engine operating conditions and cycle parameters. At 2000 r/min, the maximum recovery efficiency of waste heat energy is 7.3% under 0.2 MPa brake mean effective pressure (BMEP) but 10.7% under 1.4 MPa BMEP. With the combined ORC employed, the fuel efficiency improvement of engine comes up to 4.7% points under the operations of 2000 r/min and 0.2 MPa BMEP, while it further increases to 5.8% points under the operations of 2000 r/min and 1.4 MPa BMEP. All these indicate that the combined ORC is suitable for internal combustion (IC) engine WHR.


Sign in / Sign up

Export Citation Format

Share Document