A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis

Energy ◽  
2017 ◽  
Vol 141 ◽  
pp. 2652-2669 ◽  
Author(s):  
Alberto Carotenuto ◽  
Rafal Damian Figaj ◽  
Laura Vanoli
1991 ◽  
Vol 40 (1) ◽  
pp. 1-19 ◽  
Author(s):  
G.J. Parker ◽  
A.S. Tucker

2012 ◽  
Vol 5 (4) ◽  
pp. 507-512 ◽  
Author(s):  
Giedrius Šiupšinskas ◽  
Solveiga Adomėnaitė

The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project) Contract No. TREN/FP7EN/239497/”ECOLIFE”). Santrauka Straipsnyje analizuojamos saulės kolektorių, skirtų karšto vandentiekio sistemai ant modernizuojamų daugiabučių namų stogų įrengti esamomis klimatinėmis sąlygomis galimybės. Nagrinėjamos įvairaus dydžio plokščiųjų ir vakuuminių saulės kolektorių su akumuliacinėmis talpyklomis sistemų kombinacijos. Kaip papildomas šilumos šaltinis karštam vandeniui pašildyti naudojama iš centralizuotų šilumos tinklų tiekiama šiluma. Lyginami plokščiųjų, vakuuminių saulės kolektorių ir akumuliacinio bako dydžio kombinacijų energinių ir ekonominių skaičiavimų rezultatai. Įvertinama kai kurių esminių rodiklių pokyčių įtaka galutiniams ekonominiams rodikliams.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012104
Author(s):  
Anna Marszal-Pomianowska ◽  
Rasmus Lund Jensen ◽  
Michal Pomianowski ◽  
Olena Kalyanova Larsen ◽  
Scharling Jacob Jørgensen ◽  
...  

Abstract The share of the energy use for domestic hot water (DHW) in the total energy consumption of buildings is becoming more and more prominent. Depending on the building typology it varies between 20% to 50% of the total energy usage for old and new built single family house, respectively. The aim of this paper is to determine the energy losses in the DHW installation with division between: a) loss at the production point, b) loss in the distribution, and c) loss at the draw-off points using the results of the measurements of DHW consumption in two single family houses connected to district heating grid. The total Eloss for the two houses vary between 17% and 26%. For House 1, the production loss accounts for 8%, the pipe loss for 15% and loss at the draw off points for 3%. Moreover, the results shown that the layout of the house, in particular the placement of the bathrooms with showers or bath tubs has significant impact on the size of the distribution losses.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


Sign in / Sign up

Export Citation Format

Share Document