scholarly journals The impact of complementarity on power supply reliability of small scale hybrid energy systems

Energy ◽  
2018 ◽  
Vol 161 ◽  
pp. 737-743 ◽  
Author(s):  
Jakub Jurasz ◽  
Alexandre Beluco ◽  
Fausto A. Canales
Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1642 ◽  
Author(s):  
Hossam A. Gabbar ◽  
Muhammad R. Abdussami ◽  
Md. Ibrahim Adham

Renewable energy sources (RESs) play an indispensable role in sustainable advancement by reducing greenhouse gas (GHG) emissions. Nevertheless, due to the shortcomings of RESs, an energy mix with RESs is required to support the baseload and to avoid the effects of RES variability. Fossil fuel-based thermal generators (FFTGs), like diesel generators, have been used with RESs to support the baseload. However, using FFTGs with RESs is not a good option to reduce GHG emissions. Hence, the small-scale nuclear power plant (NPPs), such as the micro-modular reactor (MMR), have become a modern alternative to FFTGs. In this paper, the authors have investigated five different hybrid energy systems (HES) with combined heat and power (CHP), named ‘conventional small-scale fossil fuel-based thermal energy system,’ ‘small-scale stand-alone RESs-based energy system,’ ‘conventional small-scale fossil fuel-based thermal and RESs-based HES,’ ‘small-scale stand-alone nuclear energy system,’ and ‘nuclear-renewable micro hybrid energy system (N-R MHES),’ respectively, in terms of net present cost (NPC), cost of energy (COE), and GHG emissions. A sensitivity analysis was also conducted to identify the impact of the different variables on the systems. The results reveal that the N-R MHES could be the most suitable scheme for decarbonization and sustainable energy solutions.


Author(s):  
G. R. Prudhvi Kumar ◽  
D. Sattianadan ◽  
K. Vijayakumar

The power generation through renewable energy resources is increasing vastly, Solar energy and Wind Energy are the most abundantly available renewable energy resources. The growth of small scale distributed grid networks increasing rapidly in the modern power systems and Distributed Generation (DG) plays a predominant role. Microgrid is one among the emerging techniques in power systems. Power Management is mainly required to have control over the real and reactive power of individual DG and for smooth operation, maintaining stability and reliability. This paper presents a survey of the research works already reported focusing on power management of hybrid energy systems such as mainly solar and wind systems in microgrid. Six different approaches have been studied in detail for AC,DC and hybrid AC/DC microgrid.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 337
Author(s):  
Robert Kaczmarczyk ◽  
Sebastian Gurgul

A thermodynamical analysis of steam reforming of Associated Petroleum Gas (APG) was conducted in the presented research. The reforming process of heavy hydrocarbons for small scale power generation is a complex issue. One of the main issues is that a set of undesired chemical reactions deposit solid carbon and, consequently, block the reactor’s catalytic property. The experimental investigation is crucial to design an APG reforming reactor. However, a numerical simulation is a key tool to design a safe operating condition. Designing the next generation of reactors requires a complex coupling of mathematical models, kinetics, and thermodynamic analysis. In practice, the thermodynamic analysis should be applied in each control volume to assure realistic results. This is not easy to apply in practice since both thermodynamic analysis and CFD modeling can be time-consuming. In this paper, the authors suggest using a mathematical formalism called Parametric Equation Formalism to calculate the equilibrium composition. The novelty lies in the mathematical approach in which any complex system at equilibrium can be reduced to the problem of solving one non-linear equation at a time. This approach allows implementing a thermodynamic analysis easily into CFD models to assure the reasonability of obtained results and can be used for research and development of solid oxide fuel cells as a part of hybrid energy systems.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2045
Author(s):  
Fahd A. Alturki ◽  
Hassan M. H. Farh ◽  
Abdullrahman A. Al-Shamma’a ◽  
Khalil AlSharabi

Hybrid energy systems (HESs) are becoming popular for electrifying remote and rural regions to overcome the conventional energy generation system shortcomings and attain favorable technical and economic benefits. An optimal sizing of an autonomous HES consisting of photovoltaic technology, wind turbine generator, battery bank, and diesel generator is achieved by employing a new soft computing/metaheuristic algorithm called manta ray foraging optimizer (MRFO). This optimization problem is implemented and solved by employing MRFO based on minimizing the annualized system cost (ASC) and enhancing the system reliability in order to supply an off-grid northern area in Saudi Arabia. The hourly wind speed, solar irradiance, and load behavior over one year are used in this optimization problem. As for result verification, the MRFO is compared with five other soft computing algorithms, which are particle swarm optimization (PSO), genetic algorithm (GA), grasshopper optimization algorithm (GOA), big-bang-big-crunch (BBBC) algorithm, and Harris hawks optimization (HHO). The findings showed that the MRFO algorithm converges faster than all other five soft computing algorithms followed by PSO, and GOA, respectively. In addition, MRFO, PSO, and GOA can follow the optimal global solution while the HHO, GA and BBBC may fall into the local solution and take a longer time to converge. The MRFO provided the optimum sizing of the HES at the lowest ASC (USD 104,324.1), followed by GOA (USD 104,347.7) and PSO (USD 104,342.2) for a 0% loss of power supply probability. These optimization findings confirmed the supremacy of the MRFO algorithm over the other five soft computing techniques in terms of global solution capture and the convergence time.


2020 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Wesam H. Beitelmal ◽  
Paul C. Okonkwo ◽  
Fadhil Al Housni ◽  
Wael Alruqi ◽  
Omar Alruwaythi

Diesel generators are being used as a source of electricity in different parts of the world. Because of the significant expense in diesels cost and the requirement for a greener domain, such electric generating systems appear not to be efficient and environmentally friendly and should be tended to. This paper explores the attainability of utilizing a sustainable power source based on a cross-breed electric system in the cement factory in Salalah, Oman. The HOMER software that breaks down the system setup was utilized to examine the application and functional limitations of each hybridized plan. The result showed that a renewable-energy (RE)-based system has a lower cost of energy (COE) and net present cost (NPC) compared to diesel generator-based hybrid electric and standalone systems. Although the two pure renewable hybrid energy systems considered in this study displayed evidence of no emissions, lower NPC and COE values are observed in the photovoltaic/battery (PV/B) hybrid energy system compared with photovoltaic/wind turbine/battery (PV/WT/B). The PV/WT/B and PV/B systems have higher electricity production and low NPC and COE values. Moreover, the PV/B has the highest return on investment (ROI) and internal rate of return (IRR), making the system the most economically viable and adjudged to be a better candidate for rural community electrification demands.


Sign in / Sign up

Export Citation Format

Share Document