CFD modeling of gasification process in tapered fluidized bed gasifier

Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116515 ◽  
Author(s):  
Hossein Askaripour
2021 ◽  
Author(s):  
Mazda Biglari ◽  
Hui Liu ◽  
Ali Elkamel ◽  
Ali Lohi

Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics) approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad F ◽  
◽  
Ahmad N ◽  
Asghar U ◽  
Ali A ◽  
...  

Converting rice husk into energy is a promising method of generating renewable energy and reducing greenhouse gas emissions. In this research rice hush is considered as biomass fuel. The characteristics of rice husk gasification were investigated at an Equivalence Ratio (ER) of 0.25–0.38 and a gasifier temperature of 750-870°C in 20 tons per day (TPD) using steam explosion process in fluidized bed gasifier system. Different operation conditions, temperatures and loads, are investigated for their effects on the compositions, calorific properties, gasification efficiencies of syngas. The effects of the critical parameters, namely, Steam-to-Biomass Ratio (S/B), Particle size variation and gasification temperature on the quality of the product gas as well as the gasifier cold gas efficiency were analyzed. This is the new finding in the research. The optimal conditions of the gasification operation were an ER of 0.20 and gasifier temperature of 800°C. The low heating value of the gas product and cold gas efficiency were 1390kcal/Nm³ and 75%, respectively. After passing the generated gas through the gas cleaning units, it was confirmed that the tar in the product gas was removed with an efficiency of 98%. The cleaned product gas was used for the operation of 420kW, gas engine. Pressure loss often occurred at the bottom of the gasifier during the gasification operation; we found that the agglomerates generated by the gasification process caused it. To prevent the pressure loss caused by the agglomerates, the stable control of temperature inside the gasifier is needed and an ash removal device remove agglomerates should be installed to maintain stable long-term operation. This paper leads towards the production of Syngas and further on the electricity from the rice husk, an eminent biomass, copiously available all around the world. Especially in Pakistan, the rice is used abundantly so the raw material is easily available. The gas is produced using the gasification process in dual fluidized gasifier. It is a wonderful alternative to the natural gas with high calorific value. The sulfur contents are quite less compared to natural gas. It also have a good correlation with environment as flue gases emission is negligible relative to other source like coal, wood, plastic, waste etc. Another benefit of this process is the waste management and pollution control. The results are developed by using the detailed analysis of the process values of plants which is generating electricity by rice husk gasification. We learned, all results revealed that the dual fluidized bed gasification is more economical and efficient method compared to all other methods for commercial scale production of syngas. Results are analyzed which imply that the biomass is more gigantic source which replace the fossil fuels and leads towards the green energy in a more economical way. This paper provides an overview of previous works on combustion and gasification of rice husk in atmospheric fluiuidized bed reactors and summarizes the state of the art knowledge. As the high ash content, low bulk density, p characteristics and low ash melting point makes the other types of reactors like grate furnaces and downdraft gasifers either inefficient or unsuitable for rice husk conversion to energy, the fluiuidized bed reactor seems to be the promising choice. The overview shows that the reported results are from only small bench or lab scale units. Although a combustion efficiency of about 80% can normally be attained; the reported values in the literature, which are more than 95%, seem to be in higher order. Combustion intensity of about 530kg/h/m² is reported. It is also technically feasible to gasify rice husk in a fluidized bed reactor to yield combustible producer gas, even with sufficient heating value for application in internal combustion engines.


2016 ◽  
Vol 35 (1) ◽  
pp. 89-101
Author(s):  
C. Lelievre ◽  
C. A. Pickles ◽  
S. Hultgren

AbstractThe gasification of a sub-bituminous coal using CO2–O2 gas mixtures was studied in a plasma-augmented fluidized bed gasifier. Firstly, the coal was chemically characterized and the gasification process was examined using Thermogravimetric and Differential Thermal Analysis (TGA/DTA) in CO2, O2 and at a CO2 to O2 ratio of 3 to 1. Secondly, the equilibrium gas compositions were obtained using the Gibbs free energy minimization method (HSC Chemistry®7). Thirdly, gasification tests were performed in a plasma-augmented fluidized bed and the off-gas temperatures and compositions were determined. Finally, for comparison purposes, control tests were conducted using a conventional fluidized bed coal gasifier and these results were compared to those achieved in the plasma-augmented fluidized bed gasifier. The effects of bed temperature and CO2 to O2 ratio were studied. For both gasifiers, at a given bed temperature, the off-gas compositions were in general agreement with the equilibrium values. Also, for both gasifiers, an experimental CO2 to O2 ratio of about 3 to 1 resulted in the highest syngas grade (%CO + %H2). Both higher off-gas temperatures and syngas grades could be achieved in the plasma-augmented gasifier, in comparison to the conventional gasifier. These differences were attributed to the higher bed temperatures in the plasma-augmented fluidized bed gasifier.


Author(s):  
Guanxing Chen ◽  
Qizhuang Yu ◽  
Claes Brage ◽  
Christer Rosén ◽  
Krister Sjöström

An experimental study on co-gasification of coal and biomass blends in an oxygen-containing atmosphere has been carried out in a pressurized fluidized-bed gasifier. Several different biomass materials including wood and energy crops were used in the study, whereas two coals ranked of bituminite from Poland and UK were used in the investigation. The gasifier used was a Laboratory Development Unit (LDU) with an inner diameter of 144 mm. The operation temperature was 900 °C, and the pressure was 0.4 MPa. The research was part of the European Commission’s APAS and JOULE III clean coal technology programs. The study was focused on possible synergistic effects in the thermochemical treatment of the fuel blends. The char formed was examined. The tar produced in the process was analyzed. The environmentally concerned nitrogen compounds emitted from the process were detected. An unexpected result was that the blends of the fuels and their char formed in situ exhibited higher gasification reaction rate under the studied conditions. The yield of char diminished and consequently the gas production increased. Furthermore, both the formation of tar and nitrogen compounds seemed also affected synergistically in co-gasification process of the fuel blends. The yields of tar and ammonia were lower than expected.


2021 ◽  
Author(s):  
Mazda Biglari ◽  
Hui Liu ◽  
Ali Elkamel ◽  
Ali Lohi

Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics) approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.


Energies ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 504 ◽  
Author(s):  
Mazda Biglari ◽  
Hui Liu ◽  
Ali Elkamel ◽  
Ali Lohi

2021 ◽  
Vol 784 (1) ◽  
pp. 012033
Author(s):  
Xuefeng Li ◽  
Zhenhua Yan ◽  
Qingping Zhang ◽  
Bo Gao ◽  
Hao Chen ◽  
...  

2020 ◽  
Vol 6 ◽  
pp. 275-285
Author(s):  
Jurarat Nisamaneenate ◽  
Duangduen Atong ◽  
Anun Seemen ◽  
Viboon Sricharoenchaikul

2019 ◽  
Vol 353 ◽  
pp. 10-19 ◽  
Author(s):  
Yijun Liu ◽  
Shiyi Chen ◽  
Min Zhu ◽  
Ahsanullah Soomro ◽  
Wenguo Xiang

Sign in / Sign up

Export Citation Format

Share Document