scholarly journals Transient CO2 capture for open-cycle gas turbines in future energy systems

Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 119258
Author(s):  
Mathew Dennis Wilkes ◽  
Sanjay Mukherjee ◽  
Solomon Brown
2021 ◽  
Author(s):  
Laura Herraiz ◽  
Maria Elena Diego ◽  
Jean-Michel Bellas ◽  
Karen N. Finney ◽  
Mohamed Pourkashanian ◽  
...  

Author(s):  
Fabrizio Reale ◽  
Vincenzo Iannotta ◽  
Raffaele Tuccillo

The primary need of reducing pollutant and greenhouse gas emissions has led to new energy scenarios. The interest of research community is mainly focused on the development of energy systems based on renewable resources and energy storage systems and smart energy grids. In the latter case small scale energy systems can become of interest as nodes of distributed energy systems. In this context micro gas turbines (MGT) can play a key role thanks to their flexibility and a strategy to increase their overall efficiency is to integrate gas turbines with a bottoming cycle. In this paper the authors analyze the possibility to integrate a MGT with a super critical CO2 Brayton cycle turbine (sCO2 GT) as a bottoming cycle (BC). A 0D thermodynamic analysis is used to highlight opportunities and critical aspects also by a comparison with another integrated energy system in which the waste heat recovery (WHR) is obtained by the adoption of an organic Rankine cycle (ORC). While ORC is widely used in case of middle and low temperature of the heat source, s-CO2 BC is a new method in this field of application. One of the aim of the analysis is to verify if this choice can be comparable with ORC for this operative range, with a medium-low value of exhaust gases and very small power values. The studied MGT is a Turbec T100P.


2019 ◽  
pp. 117-124
Author(s):  
W. J. Nuttall ◽  
S. F. Ashley ◽  
R. A. Fenner ◽  
P. D. Krishnani ◽  
G. T. Parks

Author(s):  
J. F. Barnes

The purpose of this paper is to examine some possibilities for achieving high gas temperatures in the turbines of both open-cycle and closed-cycle plant and to show how some of the experience gained from research, development, and design of internally cooled blading for aero-engines can be applied to industrial power generation. For the short-term future, preferred schemes would seem to embrace the use of internal air cooling for open-cycle plant and refractory metals without cooling for closed-cycle nuclear plant.


Author(s):  
Rodger O. Anderson

The generation of electrical power is a complex matter that is dependent in part both on the anticipated demand and the actual amount of power required on the grid. Therefore, the amount of power being generated varies widely depending on the time of day, day of the week, and atmospheric conditions such as cold spells and heat waves. While the amount of power varies, it is recognized that maximum efficiencies are achieved by operating power generation systems at or near steady state conditions. With this in mind, there has been an increased use of gas turbine systems that may be quickly added online to the grid to provide additional power because gas turbine systems are typically well suited for being brought online quickly to provide spinning reserve or electrical generation. However, gas turbines are recognized as not being as efficient as other plant systems such as large steam plants because the gas turbine is an open cycle system where approximately 60 to 70 percent of the energy is lost as exhaust waste heat energy. One recognized method of increasing gas turbine efficiencies is to add a steam bottoming cycle to the exhaust system. However, these closed cycle systems are costly and they compromise the gas turbine’s quick starting capability. This paper discusses an open bottoming cycle that is simple, cost effective and well suited for peaking power generation service. It not only substantially improves the gas turbine simple cycle plant heat rate, but also provides the opportunity to greatly reduce the NOX emissions levels with the application of a low temperature SCR.


2019 ◽  
Vol 113 ◽  
pp. 02005
Author(s):  
D. Rattazzi ◽  
M. Rivarolo ◽  
T. Lamberti ◽  
L. Magistri

This paper aims to develop a tool for the performances comparison of innovative energy systems on board ships, both for concentrated and distributed generation applications. In the first part of the study, the tool database has been developed throughout a wide analysis of the available market solutions in terms of energy generation devices (i.e. fuel cells, internal combustion engines, micro gas turbines), fuels (hydrogen, natural gas, diesel) and related storage technologies. Many of these data have been collected also thanks to the laboratory experience of the authors’ research group on different innovative energy systems. From the database, a wide range of maps has been created, correlating costs, volumes, weights and emissions with the installed power and the operational hours required, given by the user as input. The tool highlights the best solution according to the different relevance chosen by the user for each key parameter (i.e. costs, volumes, emissions). In the second part, two different case studies are presented in order to underline how the installed power, the different ship typology and the user requirements affect the choice of the best solution. It is worth noting that the methodology has a general value, as the tool can be applied to both the design of new ships, and to the retrofit of already existing ships in order to respect new requirements (e.g. more and more stringent normative in terms of pollutant emissions in ports and restricted areas). Furthermore, the database can be easily extended to other generation and storage technologies.


2019 ◽  
Vol 14 (2) ◽  
pp. JTST0015-JTST0015 ◽  
Author(s):  
Martin KELLER ◽  
Mitsuo KOSHI ◽  
Junichiro OTOMO ◽  
Hiroshi IWASAKI ◽  
Teruo MITSUMORI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document