Selective Exhaust Gas Recycling in Gas Turbines with CO2 capture: A comprehensive technology assessment

2021 ◽  
Author(s):  
Laura Herraiz ◽  
Maria Elena Diego ◽  
Jean-Michel Bellas ◽  
Karen N. Finney ◽  
Mohamed Pourkashanian ◽  
...  
Author(s):  
Ahmed M. ElKady ◽  
Andrei Evulet ◽  
Anthony Brand ◽  
Tord Peter Ursin ◽  
Arne Lynghjem

This paper describes experimental work performed at General Electric, Global Research Center to evaluate the performance and understand the risks of using Dry Low NOx (DLN) technologies in Exhaust Gas Recirculation (EGR) conditions. Exhaust Gas Recirculation is viewed as an enabling technology for increasing the CO2 concentration of the flue gas while decreasing the volume of the post-combustion separation plant and therefore allowing a significant reduction in CO2 capture cost. A research combustor was developed for exploring the performance of nozzles operating in low O2 environment at representative pressures and temperatures. A series of experiments in a visually accessible test rig have been performed at gas turbine pressures and temperatures, in which inert gases such as N2/CO2 were used to vitiate the fresh air to the levels determined by cycle models. Moreover, the paper will discuss experimental work performed using a DLN nozzle used in GE’s F-class heavy-duty gas turbines. Experimental results using a research combustor operating in partially premixed mode, incorporate the effect of applying EGR on operability, efficiency and emissions performance under conditions of up to 40% EGR. Experiments performed in fully premixed mode using DLN single nozzle combustor revealed that further reductions in NOx could be achieved and at the same time still complying with CO emissions. While most existing studies concentrate on limitations related to the Minimum Oxygen Concentration (MOC) at the combustor exit, we report the importance of CO2 levels in the oxidizer. This limitation is as important as the MOC and it varies with the pressure and firing temperatures.


2013 ◽  
Vol 726-731 ◽  
pp. 2017-2021 ◽  
Author(s):  
Zhao Du ◽  
Xiang Ling Yuan ◽  
Ai Ling Ren ◽  
Feng Ying Fu

According to the pharmaceutical industry produce VOCs and stench of atmospheric environment pollution, combined with typical pharmaceutical biological fermentation and chemical synthesis process of VOCs and odour pollution are classified 4 types:fermentation tail gas, recycling of exhaust gas, exhaust gas and wastewater workshop stench. The control technology should be selected according to the four types of waste characteristics.


2018 ◽  
Vol 549 ◽  
pp. 649-659 ◽  
Author(s):  
Giuseppe Russo ◽  
George Prpich ◽  
Edward J. Anthony ◽  
Fabio Montagnaro ◽  
Neila Jurado ◽  
...  

Author(s):  
Y. Zhu ◽  
H. Yamada ◽  
S. Hayashi

A diode-laser absorption system having the potential of simultaneous determination of NO and NO2 concentrations in the exhaust jets from gas turbines has been being developed. The sensitivities of the detection units at a typical exhaust gas temperature of 800 K were estimated as 30 ppmv-m and 3.7 ppmv-m for NO and NO2, respectively. Experiments using simulated exhaust gas flows have shown that CO2 do not have any interference with the NO and NO2 measurements. The detection limits in ppm of the system were considerably lowered by using a multi-pass optical system. A pair of off-axis parabola mirrors was useful to prevent the laser beam from straying from the detection area of the sensor due to the beam steering in the exhaust gas. Furthermore, the multi-path optical duct fabricated with 14 mirrors on the inner wall was effective in the measurement of NO and NO2 in the exhaust gas from gas turbines.


Author(s):  
Marek Cichocki ◽  
Ilona Salamonik ◽  
Marcin Bielecki ◽  
Ever Fadlun ◽  
Artur Rusowicz

Abstract The typical combined heat and power plants requires the introduction of additional heating medium. The alternative solution is the direct integration of the exhaust gases from heat engine. High temperature, surplus oxygen and low water content of the Gas Turbines exhaust gases enabled the successful integration at industrial scale as: preheated combustion air for industrial furnaces, heat source for drying and for absorption chillers. The article comprises the reference list for direct exhaust gas integration of GTs produced by Baker Hughes formerly GE), the processes overview, GTs selection criteria, as well as the review of documented GTs applications in process industry focusing on technical and economic considerations. Majority of referenced applications for industrial furnace are in the steam methane reformers used in fertilizer industry, as well as steam crackers in petrochemical industries. Several GTs were integrated with crude oil furnace in refinery. Direct drying utilizing exhaust gas from GT, is commonly applied in ceramic, wood derivative, pulp & paper and inorganic chemicals industries. Integrating GTs with absorption chillers was introduced to serve the district heating and cooling system. The described solutions allowed to reduce specific energy consumption by 7–20% or the costs of energy consumption associated with large volume production by 15–30%. The reduction of specific energy consumption allows to decrease the amount of CO2 emitted. The overall efficiency of cogeneration plant above 90% was achieved.


2019 ◽  
Vol 83 ◽  
pp. 105-116
Author(s):  
Pérez Sánchez Jordán ◽  
Javier Eduardo Aguillón Martínez ◽  
Zdzislaw Mazur Czerwiec ◽  
Alan Martín Zavala Guzmán

Fuel ◽  
2020 ◽  
Vol 278 ◽  
pp. 118285
Author(s):  
Žiga Rosec ◽  
Tomaž Katrašnik ◽  
Urban Žvar Baškovič ◽  
Tine Seljak

Sign in / Sign up

Export Citation Format

Share Document