scholarly journals Thermodynamic evaluation of open cycle gas turbines with carbon-free fuels H2 and NH3 at high temperatures

2019 ◽  
Vol 14 (2) ◽  
pp. JTST0015-JTST0015 ◽  
Author(s):  
Martin KELLER ◽  
Mitsuo KOSHI ◽  
Junichiro OTOMO ◽  
Hiroshi IWASAKI ◽  
Teruo MITSUMORI ◽  
...  
Author(s):  
Michele Scervini ◽  
Catherine Rae

A new Nickel based thermocouple for high temperature applications in gas turbines has been devised at the Department of Material Science and Metallurgy of the University of Cambridge. This paper describes the new features of the thermocouple, the drift tests on the first prototype and compares the behaviour of the new sensor with conventional mineral insulated metal sheathed Type K thermocouples: the new thermocouple has a significant improvement in terms of drift and temperature capabilities. Metallurgical analysis has been undertaken on selected sections of the thermocouples exposed at high temperatures which rationalises the reduced drift of the new sensor. A second prototype will be tested in follow-on research, from which further improvements in drift and temperature capabilities are expected.


1947 ◽  
Vol 14 (2) ◽  
pp. A99-A102
Author(s):  
Ronald B. Smith

Abstract High temperatures involved in the operation of the gas turbine have introduced many new problems in the properties of the metals with which the designer has to work. This paper outlines some of these and offers a line of approach taken successfully by the author’s company in solving them.


Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 119258
Author(s):  
Mathew Dennis Wilkes ◽  
Sanjay Mukherjee ◽  
Solomon Brown

Author(s):  
F. Mastromatteo ◽  
F. Niccolai ◽  
M. Giannozzi ◽  
U. Bardi

Nickel-based superalloys are widely used in applications requiring strength at high temperature, and in particular in manufacturing of several important components of both aeronautics and land based gas turbines. The main property of these materials is due to their particular microstructure consisting of a fcc lattice nickel matrix (γ phase), strengthened by precipitation of a second phase Ni3(Ti,Al) (γ′ phase), having fcc lattice. During aging at high temperatures, γ′ precipitates increase their size, following a kinetic law described by the classical LSW theory. In this work the growth kinetic of γ′ precipitates for the superalloy GTD 111 has been investigated by SEM. Samples of the alloy have been aged in the typical range of service temperatures for times up to 8000 hours. For each sample a large number of images has been acquired and the size and distribution of γ′ particles have been evaluated. Plotting the average size values, corresponding to the different times and temperatures analyzed, it was possible to obtain the growth kinetic of these particles, finding that the above mentioned theory gives a good description of the observed behaviour. The data obtained for GTD 111 have been also compared with other data referring to INCONEL 738, obtained from samples aged in the same conditions and analyzed in the same way. GTD 111, when compared to IN738, resulted to have a much slower growth kinetic, resulting in a much higher creep resistance. From the collected data it was possible to calculate also the activation energy for the diffusion process for both alloys, finding out values in agreement with those obtained by other authors and very close to the activation energies of Ti and Al in Ni matrix.


Author(s):  
W. P. Danesi ◽  
R. A. Sprague ◽  
M. J. Donachie

Salt can cause titanium alloys to crack, and if long-time operation of titanium hardwares in salt atmospheres is expected, effective means must be found to eliminate or control this tendency. The authors describe in detail their stress-corrosion testing of titanium alloys, and the results are plotted in a number of tables. Figures show stress-versus-temperature charts at different high temperatures, and the microstructure of the alloy after testing is illustrated. The results of the tests are evaluated and a brief summary is given.


Author(s):  
Toshiaki Abe ◽  
Takashi Sugiura ◽  
Shuji Okunaga ◽  
Katsuhiro Nojima ◽  
Yasukata Tsutsui ◽  
...  

This paper presents an overview of a development project involving industrial cogeneration technology using 8,000-kW class hybrid gas turbines in which both metal and ceramics are used in parts subject to high temperatures in order to achieve high efficiency and low pollution. The development of hybrid gas turbines focuses mainly on the earlier commercialization of the turbine system. Stationary parts such as combustor liners, transition ducts, and first-stage turbine nozzles (stationary blades) are expected to be fabricated from ceramics. The project aims at developing material for these ceramic parts that will have a superior resistance to heat and oxidation. The project also aims at designing and prototyping a hybrid gas turbine system to analyze the operation in order to improve the performance. Furthermore, the prototyped hybrid gas turbine system will be tested for long-term operation (4,000 hours) to verify that the system can withstand commercialization. Studies will be conducted to ensure that the system’s soundness and reliability are sufficient for industrial cogeneration applications.


Author(s):  
J. F. Barnes

The purpose of this paper is to examine some possibilities for achieving high gas temperatures in the turbines of both open-cycle and closed-cycle plant and to show how some of the experience gained from research, development, and design of internally cooled blading for aero-engines can be applied to industrial power generation. For the short-term future, preferred schemes would seem to embrace the use of internal air cooling for open-cycle plant and refractory metals without cooling for closed-cycle nuclear plant.


Author(s):  
R. A. Dalla Betta ◽  
J. C. Schlatter ◽  
S. G. Nickolas ◽  
D. K. Yee ◽  
T. Shoji

A catalytic combustion system has been developed which feeds full fuel and air to the catalyst but avoids exposure of the catalyst to the high temperatures responsible for deactivation and thermal shock fracture of the supporting substrate. The combustion process is initiated by the catalyst and is completed by homogeneous combustion in the post catalyst region where the highest temperatures are obtained. This has been demonstrated in subscale test rigs at pressures up to 14 atmospheres and temperatures above 1300°C (2370°F). At pressures and gas linear velocities typical of gas turbine combustors, the measured emissions from the catalytic combustion system are NOx < 1 ppm, CO < 2 ppm and UHC < 2 ppm, demonstrating the capability to achieve ultra low NOx and at the same time low CO and UHC.


Author(s):  
Rodger O. Anderson

The generation of electrical power is a complex matter that is dependent in part both on the anticipated demand and the actual amount of power required on the grid. Therefore, the amount of power being generated varies widely depending on the time of day, day of the week, and atmospheric conditions such as cold spells and heat waves. While the amount of power varies, it is recognized that maximum efficiencies are achieved by operating power generation systems at or near steady state conditions. With this in mind, there has been an increased use of gas turbine systems that may be quickly added online to the grid to provide additional power because gas turbine systems are typically well suited for being brought online quickly to provide spinning reserve or electrical generation. However, gas turbines are recognized as not being as efficient as other plant systems such as large steam plants because the gas turbine is an open cycle system where approximately 60 to 70 percent of the energy is lost as exhaust waste heat energy. One recognized method of increasing gas turbine efficiencies is to add a steam bottoming cycle to the exhaust system. However, these closed cycle systems are costly and they compromise the gas turbine’s quick starting capability. This paper discusses an open bottoming cycle that is simple, cost effective and well suited for peaking power generation service. It not only substantially improves the gas turbine simple cycle plant heat rate, but also provides the opportunity to greatly reduce the NOX emissions levels with the application of a low temperature SCR.


Sign in / Sign up

Export Citation Format

Share Document