Network flow calculation based on the directional nodal potential method for meshed heating networks

Energy ◽  
2021 ◽  
pp. 122729
Author(s):  
Dongwen Chen ◽  
Yong Li ◽  
Zulkarnain Abbas ◽  
Dehong Li ◽  
Ruzhu Wang
2014 ◽  
Vol 484-485 ◽  
pp. 655-659
Author(s):  
Jing Wen Xu

In the planning and operation of distribution network, flow calculation and optimal flow is the hot issue for many experts and scholars to study. In network reconfiguration, service restoration and capacitor configuration, it needs hundreds even thousands times of power flow calculation. So it is very important to propose a suitable optimization algorithm. Based on the three-phase model we proposed hybrid particle swarm algorithm to calculate the three-phase power flow. The method uses the superposition principle. The distribution network is divided into two network models, one is the pure radial network without cyclic structure, and another is the pure cyclic network without radiation structure. We do iterative calculation respectively using hybrid particle algorithm, getting the calculation results. The hybrid algorithm is a new reference for the future optimization of power flow calculation in this paper.


1968 ◽  
Vol PAS-87 (11) ◽  
pp. 1939-1949 ◽  
Author(s):  
Kazuhiro Takahashi ◽  
Yasjuji Sekine ◽  
Teruhiro Umezu

Author(s):  
Shozo Ikeda ◽  
Hirotoshi Hayakawa ◽  
Daniel R. Dietderich

Pb addition makes easier to form the high Tc phase in the BSCCO system. However, Pb easily vaporized at high temperature. A controlled Pb potential method has been applied to grow the high Tc phase in films. Initially, films are deposited on cleaved MgO substrates using an rf magnetron sputtering system. These amorphous as-deposited films are heat treated in a sealed gold capsule along with a large pellet of Pb-added BSCCO. Details of the process and characterization of the films have been reported elsewhere (1). Films trated for 0.5h at 850° C contain mainly the low Tc phase with a small amount of the high Tc phase. Hawever, films treated for 3h at 850°C consist mainly of the high Tc phase. This film is superconductive with a Tc(zero) of 106K. The Pb/Bi ratio of the films, analysed by SEM- EDS, are 0.12 and 0.18 for heat tratment times of 0.5 and 3h, respectively. The present study investigates the modulated structures of these films using HREM.


1991 ◽  
Vol 138 (1) ◽  
pp. 39 ◽  
Author(s):  
R.E. Rice ◽  
W.M. Grady ◽  
W.G. Lesso ◽  
A.H. Noyola ◽  
M.E. Connolly

1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


Sign in / Sign up

Export Citation Format

Share Document