scholarly journals The State-of-the-Art Review on Applications of Intrusive Sensing, Image Processing Techniques, and Machine Learning Methods in Pavement Monitoring and Analysis

Engineering ◽  
2020 ◽  
Author(s):  
Yue Hou ◽  
Qiuhan Li ◽  
Chen Zhang ◽  
Guoyang Lu ◽  
Zhoujing Ye ◽  
...  
2020 ◽  
Vol 36 (2) ◽  
pp. 159-172
Author(s):  
Cong Thanh Bui ◽  
Loi Cao Van ◽  
Minh Hoang ◽  
Quang Uy Nguyen

The rapid development of the Internet and the wide spread of its applications has affected many aspects of our life. However, this development also makes the cyberspace more vulnerable to various attacks. Thus, detecting and preventing these attacks are crucial for the next development of the Internet and its services. Recently, machine learning methods have been widely adopted in detecting network attacks. Among many machine learning methods, AutoEncoders (AEs) are known as the state-of-the-art techniques for network anomaly detection. Although, AEs have been successfully applied to detect many types of attacks, it is often unable to detect some difficult attacks that attempt to mimic the normal network traffic. In order to handle this issue, we propose a new model based on AutoEncoder called Double-Shrink AutoEncoder (DSAE). DSAE put more shrinkage on the normal data in the middle hidden layer. This helps to pull out some anomalies that are very similar to normal data. DSAE are evaluated on six well-known network attacks datasets. The experimental results show that our model performs competitively to the state-of-the-art model, and often out-performs this model on the attacks group that is difficult for the previous methods.


Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Mohd Azraai Mohd Razman ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
...  

Author(s):  
Minsik Oh ◽  
Sungjoon Park ◽  
Sun Kim ◽  
Heejoon Chae

Abstract Gene expressions are subtly regulated by quantifiable measures of genetic molecules such as interaction with other genes, methylation, mutations, transcription factor and histone modifications. Integrative analysis of multi-omics data can help scientists understand the condition or patient-specific gene regulation mechanisms. However, analysis of multi-omics data is challenging since it requires not only the analysis of multiple omics data sets but also mining complex relations among different genetic molecules by using state-of-the-art machine learning methods. In addition, analysis of multi-omics data needs quite large computing infrastructure. Moreover, interpretation of the analysis results requires collaboration among many scientists, often requiring reperforming analysis from different perspectives. Many of the aforementioned technical issues can be nicely handled when machine learning tools are deployed on the cloud. In this survey article, we first survey machine learning methods that can be used for gene regulation study, and we categorize them according to five different goals: gene regulatory subnetwork discovery, disease subtype analysis, survival analysis, clinical prediction and visualization. We also summarize the methods in terms of multi-omics input types. Then, we explain why the cloud is potentially a good solution for the analysis of multi-omics data, followed by a survey of two state-of-the-art cloud systems, Galaxy and BioVLAB. Finally, we discuss important issues when the cloud is used for the analysis of multi-omics data for the gene regulation study.


2015 ◽  
Vol 24 (4) ◽  
pp. 405-424 ◽  
Author(s):  
Shiv Ram Dubey ◽  
Anand Singh Jalal

AbstractImages are an important source of data and information in the agricultural sciences. The use of image-processing techniques has outstanding implications for the analysis of agricultural operations. Fruit and vegetable classification is one of the major applications that can be utilized in supermarkets to automatically detect the kinds of fruits or vegetables purchased by customers and to determine the appropriate price for the produce. Training on-site is the underlying prerequisite for this type of arrangement, which is generally caused by the users having little or no expert knowledge. We explored various methods used in addressing fruit and vegetable classification and in recognizing fruit disease problems. We surveyed image-processing approaches used for fruit disease detection, segmentation and classification. We also compared the performance of state-of-the-art methods under two scenarios, i.e., fruit and vegetable classification and fruit disease classification. The methods surveyed in this paper are able to distinguish among different kinds of fruits and their diseases that are very alike in color and texture.


2021 ◽  
Author(s):  
Andreas Sepp

Artificial intelligence and machine learning methods had significant contribution to the advancement and progress of predictive analytics. This article presents a state of the art of methods and applications of artificial intelligence and machine learning.


Sign in / Sign up

Export Citation Format

Share Document