scholarly journals Post-peak behavior of concrete dams based on nonlinear finite element analyses

2021 ◽  
Vol 130 ◽  
pp. 105778
Author(s):  
Jonas Enzell ◽  
Adrian Ulfberg ◽  
Gabriel Sas ◽  
Richard Malm
Author(s):  
Jing Zhang ◽  
Hong-wei Guo ◽  
Juan Wu ◽  
Zi-ming Kou ◽  
Anders Eriksson

In view of the problems of low accuracy, small rotational angle, and large impact caused by flexure joints during the deployment process, an integrated flexure revolute (FR) joint for folding mechanisms was designed. The design was based on the method of compliance and stiffness ellipsoids, using a compliant dyad building block as its flexible unit. Using the single-point synthesis method, the parameterized model of the flexible unit was established to achieve a reasonable allocation of flexibility in different directions. Based on the single-parameter error analysis, two error models were established to evaluate the designed flexure joint. The rotational stiffness, the translational stiffness, and the maximum rotational angle of the joints were analyzed by nonlinear finite element analyses. The rotational angle of one joint can reach 25.5° in one direction. The rotational angle of the series FR joint can achieve 50° in one direction. Experiments on single and series flexure joints were carried out to verify the correctness of the design and analysis of the flexure joint.


1995 ◽  
Vol 117 (2) ◽  
pp. 377-383 ◽  
Author(s):  
V. K. Arya ◽  
G. R. Halford

The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. The model has recently been put forth by Freed and Walker. The feasibility of the viscoplastic model is demonstrated for nonlinear structural analyses by implementing the model into a finite element program and performing nonlinear finite element analyses for several uniaxial and multiaxial problems. Good agreement is shown to exist between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.


Sign in / Sign up

Export Citation Format

Share Document