Strain Rate Effects on the Crack Propagation Speed Under Different Loading Modes (I, II and I/II): Experimental Investigations

Author(s):  
Mahmoud Alneasan ◽  
Mahmoud Behnia
1985 ◽  
Vol 58 (4) ◽  
pp. 785-805 ◽  
Author(s):  
D. G. Young

Abstract Research was conducted to define appropriate compound loading conditions and energy parameters required to properly control and analyze fatigue crack propagation experiments for tire sidewall applications. The effects of strain level, pulse frequency, overall cycle frequency, sample thickness, and oven temperature were screened, and strain level was shown to be the dominant variable in the region of interest. Designed experiments further confirmed that frequency (i.e., strain rate) effects upon strain energy are small at normal rates of tire deformation (equivalent to 40 Hz). However, at typical laboratory test frequencies (≤5 Hz), strain rate effects on strain energy are large, and the differences vs. results under tire conditions depend heavily on polymer type as well as test temperature. Thus, the use of strain level, strain rate, and temperature conditions which simulate the tire service environment are critical to give representative results in laboratory testing. A constitutive equation was defined which provides an excellent model for strain energy in pure (or simple) shear as a function of the principal extension ratio (i.e., strain level) at constant frequency. Therefore, computer modeling of such experiments appears straightforward using an on-line minicomputer. Fatigue crack propagation studies showed major effects of pure-shear sample thickness, processing prior to molding, different types of reference compounds, and different polymer types. Halobutyl compounds and halobutyl/EPDM/NR blends were shown to provide superior FCP resistance at a given strain or strain energy level. These results were consistent with earlier tire and laboratory data.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Piotr Bartkowski ◽  
Grzegorz Suwała ◽  
Robert Zalewski

AbstractJammed granular systems, also known as vacuum packed particles (VPP), have begun to compete with the well commercialized group of smart structures already widely applied in various fields of industry, mainly in civil and mechanical engineering. However, the engineering applications of VPP are far ahead of the mathematical description of the complex mechanical mechanisms observed in these unconventional structures. As their wider commercialization is hindered by this gap, in the paper the authors consider experimental investigations of granular systems, mainly focusing on the mechanical responses that take place under various temperature and strain rate conditions. To capture the nonlinear behavior of jammed granular systems, a constitutive model constituting an extension of the Johnson–Cook model was developed and is presented. green The extended and modified constitutive model for VPP proposed in the paper could be implemented in the future into a commercial Finite Element Analysis code, making it possible to carry out fast and reliable numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document