Stochastic approach to study the site response in presence of shear wave velocity inversion: Application to seismic microzonation studies in Italy

2021 ◽  
Vol 280 ◽  
pp. 105914
Author(s):  
S. Fabozzi ◽  
S. Catalano ◽  
G. Falcone ◽  
G. Naso ◽  
A. Pagliaroli ◽  
...  
2021 ◽  
Author(s):  
Stefania Fabozzi ◽  
Stefano Catalano ◽  
Giuseppe Naso ◽  
Alessandro Pagliaroli ◽  
Edoardo Peronace ◽  
...  

<p>The seismic subsoil response in terms of amplification or attenuation of the ground motion is the result of a complex combination of factors, including the vertical and horizontal subsoil heterogeneities (Fabozzi et al., 2021). In volcanic areas in particular, the vertical subsoil heterogeneities are well identified by characteristic superposition of stiffer volcanic horizons on softer levels, giving rise to stiff-soft alternating layers, also in the form of multiple Vs inversions with the depth. This condition is typical of sheet-like blankets of lava or pyroclastic deposits, extensively covering the sedimentary substratum, frequent in the peripheral areas of large basaltic stratovolcanos or in areas adjacent to large explosive acidic volcanic edifices. The aim of the present work is to study the effect of such vertical heterogeneities on the seismic site response. With this end, in correspondence of volcanic areas identified by means of a preliminary geological screening in the Italian territory, subsoil properties relevant for seismic site response analyses were extracted from the Italian database of the seismic microzonation studies (DB-SMs in DPC, 2018), which is available at www.webms.it and is developed and maintained by CNR IGAG (National Research Council of Italy, Institute of Environmental Geology and Geoengineering, www.igag.cnr. it). The collection of input data was used for an extensive one-dimensional equivalent linear numerical site response analyses, in order to evaluate the influence of stiffness inversions on ground motion at surface. In particular, different idealized subsoil 1D models of the identified geological areas were defined in terms of variation of layers thickness, shear wave velocity and nonlinear properties. The effect of the variability of these parameters on the seismic site response in terms of amplification factors (ICMS, 2008) was studied parametrically.</p><p><strong>References </strong></p><ul><li>DPC, Dipartimento della Protezione Civile, 2018. Commissione tecnica per il supporto e monitoraggio degli studi di Microzonazione Sismica (ex art.5, OPCM3907/10), (2018) WebMs; WebCLE. A cura di: Maria Sole Benigni, Fabrizio Bramerini, Gianluca Carbone, Sergio Castenetto, Gian Paolo Cavinato, Monia Coltella, Margherita Giuffrè, Massimiliano Moscatelli. In: Giuseppe Naso. Andrea Pietrosante, Francesco Stigliano.</li> <li>Fabozzi S., Catalano S., Falcone G., Naso G., Pagliaroli A., Peronace E., Porchia A., Romagnoli G., Moscatelli M. (2021) Stochastic approach to study the site response in presence of shear wave velocity inversion: application to seismic microzonation studies in Italy. Engineering Geology https://doi.org/10.1016/j.enggeo.2020.105914.</li> <li>ICMS, 2008. Indirizzi e Criteri per la Microzonazione Sismica. In: Gruppo di lavoro ICMS. Conferenza Delle Regioni E Province Autonome - Dipartimento Della Protezione Civile. https://www.centromicrozonazionesismica.it/it/download/category/7-indi rizzi-e-criteri-per-lamicrozonazione-sismica (In Italian).</li> </ul>


2021 ◽  
Author(s):  
Gino Romagnoli ◽  
Gianluca Carbone ◽  
Stefano Catalano ◽  
Massimo Cesarano ◽  
Stefania Fabozzi ◽  
...  

<p>The availability of a unique database, where all data of the seismic microzonation studies carried out in about 1900 municipalities of Italy (https://www.webms.it/) are achieved with a standardized format, allowed statistical elaborations in terms of subsoil parameters. In particular, we analysed borehole logs and geophysical data in order to characterize them with the shear wave velocity (Vs) vertical profile, and the code of standardized engineering geological units, according to the Italian Guidelines for Seismic Microzonation (Seismic Microzonation Working Group, 2015; 2018). The Vs parameter, extracted from about 3700 geophysical surveys, was correlated to the engineering geological units from the borehole logs, with 1meter step. The correlation was performed for about 1700 available Down-Hole (DH) surveys and for about 2000 Multichannel Analyses of Surface Waves (MASW). For these latter, we selected only MASW surveys located near boreholes, no more than 100 m away. The statistical analysis on the distribution and dispersion of Vs parameter allowed to calculate the Vs values related to the mode, mean, median, standard deviation, first quartile, third quartile, minimum and maximum, and the trend with depth of Vs for each engineering geological unit. Validation with external datasets (e.g. Italian Vs30 map, Mori et al., 2020) demonstrates that the characterization of engineering geological units in term of Vs, based on velocity profiles extracted by the Italian seismic microzonation dataset, allow to reliably characterize the engineering geological model, where no geophysical data are available. Statistics of subsoil parameters will represent a fundamental tool for computing local seismic ground motion parameters (e.g. PGA, H<sub>SM</sub>) in the areas not covered by seismic microzonation studies.</p><p><strong>References</strong></p><p>- Mori, F., Mendicelli, A., Moscatelli, M., Romagnoli, 796 G., Peronace, E., Naso, G., 2020. A new Vs30 map for Italy based on the seismic microzonation dataset. Engineering Geology 275, 105745. https://doi.org/10.1016/j.enggeo.2020.105745.</p><p>- Seismic Microzonation Working Group, 2015. Guidelines for Seismic Microzonation http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf</p><p>- Seismic Microzonation Working Group, 2018. Standard di rappresentazione e archiviazione informatica Versione 4.1. http://www.protezionecivile.gov.it/attivita-rischi/rischio-sismico/attivita/commissione-supporto-monitoraggio-studi-microzonazione/standard-rappresentazione-archiviazione-informatica</p>


2014 ◽  
Vol 12 (6) ◽  
pp. 739-750 ◽  
Author(s):  
P. Martínez‐Pagán ◽  
M. Navarro ◽  
J. Pérez‐Cuevas ◽  
F.J. Alcalá ◽  
A. García‐Jerez ◽  
...  

2014 ◽  
Vol 580-583 ◽  
pp. 264-267
Author(s):  
Sheng Jie Di ◽  
Zhi Gang Shan ◽  
Xue Yong Xu

Characterization of the shear wave velocity of soils is an integral component of various seismic analysis, including site classification, hazard analysis, site response analysis, and soil-structure interaction. Shear wave velocity at offshore sites of the coastal regions can be measured by the suspension logging method according to the economic applicability. The study presents some methods for estimating the shear wave velocity profiles in the absence of site-specific shear wave velocity data. By applying generalized regression neural network (GRNN) for the estimation of in-situ shear wave velocity, it shows good performances. Therefore, this estimation method is worthy of being recommended in the later engineering practice.


2001 ◽  
Vol 17 (1) ◽  
pp. 65-87 ◽  
Author(s):  
Adrián Rodríguez-Marek ◽  
Jonathan D. Bray ◽  
Norman A. Abrahamson

A simplified empirically based seismic site response evaluation procedure that includes measures of the dynamic stiffness of the surficial materials and the depth to bedrock as primary parameters is introduced. This geotechnical site classification scheme provides an alternative to geologic-based and shear wave velocity-based site classification schemes. The proposed scheme is used to analyze the ground motion data from the 1989 Loma Prieta and 1994 Northridge earthquakes. Period-dependent and intensity-dependent spectral acceleration amplification factors for different site conditions are presented. The proposed scheme results in a significant reduction in standard error when compared with a simpler “rock vs. soil” classification system. Moreover, results show that sites previously grouped as “rock” should be subdivided as competent rock sites and weathered soft rock/shallow stiff soil sites to reduce uncertainty in defining site-dependent ground motions. Results also show that soil depth is an important parameter in estimating seismic site response. The standard errors resulting from the proposed site classification system are comparable with those obtained using the more elaborate code-based average shear-wave velocity classification system.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Dalia Munaff Naji ◽  
Muge K. Akin ◽  
Ali Firat Cabalar

Assessment of seismic site classification (SSC) using either the average shear wave velocity (VS30) or the average SPT-N values (N30) for upper 30 m in soils is the simplest method to carry out various studies including site response and soil-structure interactions. Either the VS30- or the N30-based SSC maps designed according to the National Earthquake Hazards Reduction Program (NEHRP) classification system are effectively used to predict possible locations for future seismic events. The main goal of this study is to generate maps using the Geographic Information System (GIS) for the SSC in Kahramanmaras city, influenced by both East Anatolian Fault and Dead Sea Fault Zones, using both VS30 and N30 values. The study also presents a series of GIS maps produced using the shear wave velocity (VS) and SPT-N values at the depths of 5 m, 10 m, 15 m, 20 m, and 25 m. Furthermore, the study estimates the bed rock level and generates the SSC maps for the average VS values through overburden soils by using the NEHRP system. The VS30 maps categorize the study area mainly under class C and limited number of areas under classes B and D, whereas the N30 maps classify the study area mainly under class D. Both maps indicate that the soil classes in the study area are different to a high extent. Eventually, the GIS maps complied for the purpose of urban development may be utilized effectively by engineers in the field.


Sign in / Sign up

Export Citation Format

Share Document