Friction-damage coupled models and macroscopic strength criteria for ice-saturated frozen silt with crack asperity variation by a micromechanical approach

2021 ◽  
Vol 294 ◽  
pp. 106405
Author(s):  
Lun-Yang Zhao ◽  
Yuan-Ming Lai ◽  
Jian-Fu Shao ◽  
Wan-Lu Zhang ◽  
Qi-Zhi Zhu ◽  
...  
2002 ◽  
Vol 5 (2-3-4) ◽  
pp. 423-432 ◽  
Author(s):  
Christophe Poizat ◽  
Christophe Husson ◽  
Said Ahzi ◽  
Nadia Bahlouli ◽  
Laurent Merle

2002 ◽  
Author(s):  
Patricia A. Phoebus ◽  
James A. Cummings

Author(s):  
N. A. Zontsika ◽  
A. Abdul-Latif ◽  
S. Ramtani

Motivated by the already developed micromechanical approach (Abdul-Latif et al., 2002, “Elasto-Inelastic Self-Consistent Model for Polycrystals,” ASME J. Appl. Mech., 69(3), pp. 309–316.), a new extension is proposed for describing the mechanical strength of ultrafine-grained (ufg) materials whose grain sizes, d, lie in the approximate range of 100 nm < d < 1000 nm as well as for the nanocrystalline (nc) materials characterized by d≤100 nm. In fact, the dislocation kinematics approach is considered for characterizing these materials where grain boundary is taken into account by a thermal diffusion concept. The used model deals with a soft nonincremental inclusion/matrix interaction law. The overall kinematic hardening effect is described naturally by the interaction law. Within the framework of small deformations hypothesis, the elastic part, assumed to be uniform and isotropic, is evaluated at the granular level. The heterogeneous inelastic part of deformation is locally determined. In addition, the intragranular isotropic hardening is modeled based on the interaction between the activated slip systems within the same grain. Affected by the grain size, the mechanical behavior of the ufg as well as the nc materials is fairly well described. This development is validated through several uniaxial stress–strain experimental results of copper and nickel.


2017 ◽  
Vol 96 (11) ◽  
Author(s):  
Chao Wang ◽  
Ming Gong ◽  
Yongjian Han ◽  
Guangcan Guo ◽  
Lixin He

2012 ◽  
Vol 253-255 ◽  
pp. 456-461
Author(s):  
Yan Fu Qin ◽  
Bin Tian ◽  
Gang Xu ◽  
Xiao Chun Lu

Frost resistance research is one of the important subject of concrete durability, however strength criteria is an important part of the study of mechanical behavior of concrete. So far, about concrete failure criteria are almost for normal concrete, which the domestic and overseas scholars have comparative detailed research in every respect to it, and to freeze-thaw damage of concrete but few research. Based on the summary of the existing ordinary concrete strength and failure criteria in normal state and after freeze-thaw damage,this paper have a brief comment of failure criteria on concrete after freeze-thaw damage. For later research about concrete strength and failure criteria under freezing and thawing cycle provide the reference.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shamsad Ahmad ◽  
Ibrahim Hakeem ◽  
Mohammed Maslehuddin

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.


2012 ◽  
Vol 452-453 ◽  
pp. 1351-1355 ◽  
Author(s):  
Grzegorz Wszołek ◽  
Piotr Czop ◽  
Dawid Jakubowski ◽  
Damian Slawik

The aim of this paper is to demonstrate a possibility to optimize a shock absorber design to minimize level of vibrations with the use of model-based approach. The paper introduces a proposal of an optimization method that allows to choose the optimal values of the design parameters using a shock absorber model to minimize the level of vibrations. A model-based approach is considered to obtain the optimal pressure-flow characteristic by simulations conducted with the use of coupled models, including the damper and the servo-hydraulic tester model. The presence of the tester model is required due to high non-linear coupling of the tested object (damper) and the tester itself to be used for noise evaluation. This kind of evaluation is used in the automotive industry to investigate dampers, as an alternative to vehicle-level tests. The paper provides numerical experimental case studies to show application scope of the proposed method


2014 ◽  
Vol 56 ◽  
pp. 790-796 ◽  
Author(s):  
Andrea Caporale ◽  
Fulvio Parisi ◽  
Domenico Asprone ◽  
Raimondo Luciano ◽  
Andrea Prota

Sign in / Sign up

Export Citation Format

Share Document