Design model for the verification of the separating function of light timber frame assemblies

2010 ◽  
Vol 32 (4) ◽  
pp. 1184-1195 ◽  
Author(s):  
Andrea Frangi ◽  
Vanessa Schleifer ◽  
Mario Fontana
2018 ◽  
Vol 9 (3) ◽  
pp. 252-263 ◽  
Author(s):  
Mattia Tiso ◽  
Alar Just

Purpose Insulation materials’ contribution to the fire resistance of timber frame assemblies may vary considerably. At present, Eurocode 5 provides a model for fire design of the load-bearing function of timber frame assemblies with cavities completely filled with stone wool. Very little is known about the fire protection provided by other insulation materials. An improved design model which has the potential to consider the contribution of any insulation material has been introduced by the authors. This paper aims to analyze the parameters that describe in a universal way the protection against the charring given by different insulations not included in Eurocode 5. Design/methodology/approach A series of model-scale furnace tests of floor specimens for three different insulation materials were carried out. An analysis on the charring depth of the residual cross-sections was conducted by means of a resistograph device. Findings The study explains the criteria and procedure followed to derive the coefficients for the improved design model for three insulations involved in the study. Originality/value This research study involves a large experimental work which forms the basis of the proposed design model. This study presents an important step for fire resistance calculations of timber frame assemblies.


2020 ◽  
pp. 268-274
Author(s):  
Katrin Nele Mäger ◽  
Mattia Tiso ◽  
Alar Just

2020 ◽  
Vol 91 (5) ◽  
pp. 70-76
Author(s):  
E.V. LEONTIEV ◽  
◽  

The paper considers the system "beam - elastic foundation", in which a beam with free edges was at first on a solid elastic foundation, but when a defect suddenly forms in the foundation under the right side of the beam, part of foundation was removed from design model. As a result of calculations performed by the method of initial parameters, the displacements and internal forces for the static problem are determined. The dynamic problem of determining the forces and displacements was solved, taking into account the three vibration loads F (t) = F sinγt applied at arbitrary points d when the conditions for supporting the right side of the beam on an elastic foundation were changed, the values of the dynamics coefficients were determined. Conditions are formulated that must be taken into account when analyzing the dynamic behavior of a structure under the influence of vibration loads in the case of a change in the conditions of bearing on an elastic foundation.


Sign in / Sign up

Export Citation Format

Share Document