Fiber-reinforced lightweight concrete slabs for the maintenance of the Soleri Viaduct

2015 ◽  
Vol 99 ◽  
pp. 184-191 ◽  
Author(s):  
Alessandro P. Fantilli ◽  
Alessio D. Cavallo ◽  
Giuseppe Pistone
2008 ◽  
Vol 35 (3) ◽  
pp. 312-320 ◽  
Author(s):  
A. Zaidi ◽  
R. Masmoudi

The difference between the transverse coefficients of thermal expansion of fiber reinforced polymer (FRP) bars and concrete generates radial pressure at the FRP bar – concrete interface, which induces tensile stresses within the concrete under temperature increase and, eventually, failure of the concrete cover if the confining action of concrete is insufficient. This paper presents the results of an experimental study to investigate the thermal effect on the behaviour of FRP bars and concrete cover, using concrete slab specimens reinforced with glass FRP bars and subjected to thermal loading from –30 to +80 °C. The experimental results show that failure of concrete cover was produced at temperatures varying between +50 and +60 °C for slabs having a ratio of concrete cover thickness to FRP bar diameter (c/db) less than or equal to 1.4. A ratio of c/db greater than or equal to 1.6 seems to be sufficient to avoid splitting failure of concrete cover for concrete slabs subjected to high temperatures up to +80 °C. Also, the first cracks appear in concrete at the FRP bar – concrete interface at temperatures around +40 °C. Comparison between experimental and analytical results in terms of thermal loads and thermal strains is presented.


Sign in / Sign up

Export Citation Format

Share Document