Cyclic loading testing of repaired SMA and steel reinforced concrete shear walls

2018 ◽  
Vol 168 ◽  
pp. 128-141 ◽  
Author(s):  
Leonardo Cortés-Puentes ◽  
Mohammed Zaidi ◽  
Dan Palermo ◽  
Elena Dragomirescu
2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2018 ◽  
Vol 763 ◽  
pp. 812-817
Author(s):  
Daniel Dan ◽  
Sorin Codrut Florut ◽  
Viorel Todea ◽  
Valeriu Stoian

Buildings placed in seismic areas are designed to simultaneously ensure strength, ductility and stiffness during earthquakes. In most cases the lateral resisting system is composed by shear walls. Lately for mid and high rise buildings the solution to use steel reinforced concrete shear walls, called hybrid walls, has been used. In most cases, the shear walls provided to limit the lateral displacement of the buildings, need to have openings due to architectural requirements. The existing theoretical and experimental studies presented in the literature refer to the behavior of solid/plain walls and a lack of information was identified for hybrid walls with openings. A theoretical and experimental program was developed at Politehnica University Timisoara, Romania with the aim to study the behavior of hybrid walls with centered and staggered openings. The current paper presents the results of nonlinear finite element analyses using ATENA package performed in order to assess the structural capabilities of the proposed experimental specimens with openings. Using the results obtained in one previous experimental program, consisting in tests on 1:3 scale steel-concrete composite elements, the paper presents a comparative study regarding the behavior of hybrid walls with openings versus solid walls. The study is focused on nonlinear behavior of elements with key parameters being evaluated, i.e. maximum load, deformation capacity and stiffens degradation.


2010 ◽  
Vol 163-167 ◽  
pp. 1329-1332
Author(s):  
Bin Liang ◽  
Meng Yang

The structural behavior of a steel reinforced concrete (SRC) transfer beam in high-rise building is studied in the paper. Mechanical properties and deformation characteristics between transfer beam and shear wall are analyzed by an analytic approach and the nonlinear finite element method. The stress analytical solutions for the SRC transfer beam are obtained and agree with finite element calculation data in an actual project. The results show that the beam can be as an eccentric tension member, meanwhile the performance of shear wall must be considered. And it also shows that the shear stress and vertical compressed stress must be considered in end both transfer beam and shear wall and there is interaction between the beam and the shear walls above. The results can be used to describe the behavior of the SRC transfer beam under complicated loads.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Ju-Seong Jung ◽  
Kang-Seok Lee

In this study, a new technique for seismic retrofitting via the attachment of an “external steel reinforced concrete frame” (ESRCF) system was developed to strengthen medium-to-low-rise reinforced concrete (RC) buildings. Two methods (bolting and welding) were developed to connect existing RC frames and external strengthening elements; these methods are technically and practically suited to various construction conditions. The retrofitting method developed in this study can be used to perform seismic strengthening construction, while residents continue to live within the building. The method is categorized as a “strength design approach” implemented via retrofitting, allowing the lateral ultimate load capacity of RC buildings, whose failure mode is shear, to be increased easily. Test specimens were designed based on an existing RC building in Korea lacking seismic data and then strengthened using the ESRCF system. Pseudodynamic and cyclic loading tests were conducted to verify the effects of seismic retrofitting. In total, four RC frame specimens were prepared: one nonstrengthened control specimen for the cyclic loading test, one nonstrengthened control specimen, one specimen strengthened with a welded ESRCF system, and one specimen strengthened with a bolted ESRCF system for the pseudodynamic test. The earthquake response behavior with use of the proposed method, in terms of the maximum response strength, response displacement, and degree of earthquake damage, is compared with a control RC frame. The test results indicated that both the bolting and welding methods used for connecting the existing RC frame to the ESRCF effectively increased the lateral ultimate strength, resulting in reduced response displacement of building structures under large-scale earthquake conditions.


Sign in / Sign up

Export Citation Format

Share Document