scholarly journals Vibration of cracked functionally graded microplates by the strain gradient theory and extended isogeometric analysis

2019 ◽  
Vol 187 ◽  
pp. 251-266 ◽  
Author(s):  
Hoang X. Nguyen ◽  
Elena Atroshchenko ◽  
Tuan Ngo ◽  
H. Nguyen-Xuan ◽  
Thuc P. Vo
2020 ◽  
Vol 31 (12) ◽  
pp. 1511-1523
Author(s):  
Mohammad Mahinzare ◽  
Hossein Akhavan ◽  
Majid Ghadiri

In this article, a first-order shear deformable model is expanded based on the nonlocal strain gradient theory to vibration analysis of smart nanostructures under different boundary conditions. The governing equations of motion of rotating magneto-viscoelastic functionally graded cylindrical nanoshell in the magnetic field and corresponding boundary conditions are obtained using Hamilton’s principle. To discretize the equations of motion, the generalized differential quadrature method is applied. The aim of this work is to investigate the effects of the temperature changes, nonlocal parameter, material length scale, viscoelastic coefficient, various boundary conditions, and the rotational speed of this smart structure on natural frequencies of rotating cylindrical nanoshell made of magneto-viscoelastic functionally graded material.


2018 ◽  
Vol 35 (4) ◽  
pp. 441-454 ◽  
Author(s):  
M. Shishesaz ◽  
M. Hosseini

ABSTRACTIn this paper, the mechanical behavior of a functionally graded nano-cylinder under a radial pressure is investigated. Strain gradient theory is used to include the small scale effects in this analysis. The variations in material properties along the thickness direction are included based on three different models. Due to slight variations in engineering materials, the Poisson’s ratio is assumed to be constant. The governing equation and its corresponding boundary conditions are obtained using Hamilton’s principle. Due to the complexity of the governed system of differential equations, numerical methods are employed to achieve a solution. The analysis is general and can be reduced to classical elasticity if the material length scale parameters are taken to be zero. The effect of material indexn, variations in material properties and the applied internal and external pressures on the total and high-order stresses, are well examined. For the cases in which the applied external pressure at the inside (or outside) radius is zero, due to small effects in nano-cylinder, some components of the high-order radial stresses do not vanish at the boundaries. Based on the results, the material inhomogeneity indexn, as well as the selected model through which the mechanical properties may vary along the thickness, have significant effects on the radial and circumferential stresses.


Author(s):  
Y. Gholami ◽  
R. Ansari ◽  
R. Gholami ◽  
H. Rouhi

AbstractA numerical approach is used herein to study the primary resonant dynamics of functionally graded (FG) cylindrical nanoscale panels taking the strain gradient effects into consideration. The basic relations of the paper are written based upon Mindlin’s strain gradient theory (SGT) and three-dimensional (3D) elasticity. Since the formulation is developed using Mindlin’s SGT, it is possible to reduce it to simpler size-dependent theories including modified forms of couple stress and strain gradient theories (MCST & MSGT). The governing equations is derived and directly discretized via the variational differential quadrature technique. Then, a numerical solution technique is employed to study the nonlinear resonance response of nanopanels with various edge conditions under a harmonic load. The impacts of length scale parameter, material and geometrical parameters on the frequency–response curves of nanopanels are investigated. In addition, comparisons are provided between the predictions of MSGT, MCST and the classical elasticity theory.


Sign in / Sign up

Export Citation Format

Share Document