Cyclic behavior of steel tube-reinforced high-strength concrete composite columns with high-strength steel bars

2019 ◽  
Vol 189 ◽  
pp. 565-579 ◽  
Author(s):  
Jianwei Zhang ◽  
Xiangyu Li ◽  
Wanlin Cao ◽  
Cheng Yu
2019 ◽  
Vol 23 (4) ◽  
pp. 794-809
Author(s):  
Yong Yang ◽  
Xing Du ◽  
Yunlong Yu ◽  
Yongpu Pan

The ultra-high-strength concrete-encased concrete-filled steel tube column consists of a concrete-filled steel tube core and a rectangle-shaped reinforced concrete encasement. This article presents the seismic performance analysis of ultra-high-strength concrete-encased concrete-filled steel tube columns subjected to cyclic loading. Based on the measured load-lateral displacement hysteresis curves of six ultra-high-strength concrete-encased concrete-filled steel tube columns and two conventional RC columns, the seismic behaviours, such as the ductility, energy dissipation, stiffness and load-bearing capacity, were analysed. The effects of the arrangement of the stirrups and the layout of the prestressed steel strips on the seismic performance of the composite columns were critically examined. The test results indicated that the ductility and energy dissipation performance of the ultra-high-strength concrete-encased concrete-filled steel tube columns were increased by 74.8% and 162.7%, respectively, compared with the conventional columns. The configuration of the prestressed steel strip increased the ductility of the composite column by 28.9%–63% and increased the energy consumption performance by 160.2%–263.3%. By reducing the stirrup spacing and using prestressed steel strips, the concrete-filled steel tube core columns could be effectively confined, leading to a great enhancement in ductility, energy dissipation, stiffness and load-bearing capacity.


2011 ◽  
Vol 368-373 ◽  
pp. 410-414 ◽  
Author(s):  
Hong Zhen Kang ◽  
Lei Yao ◽  
Xi Min Song ◽  
Ying Hua Ye

To study axial compressive strength of high strength concrete-filled steel tube composite columns, tests of 18 specimens were carried out. Parameters of the specimens were the confinement index of concrete-filled steel tube, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. Test results show that the concrete-filled steel tube and the reinforced concrete deformed simultaneously in the axial direction before and at the peak value of axial compressive force; after failure of the reinforced concrete, the concrete-filled steel tube can still bear the axial load and deformation; the main influential factors of axial compressive capacity are confinement index, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. The accuracy of the formula of axial compressive strength of composite columns provided by CECS 188:2005 is proved by the test results of this paper.


2015 ◽  
Vol 1089 ◽  
pp. 235-238
Author(s):  
Ping Guan ◽  
Lan Xiang Chen

To study on the mechanical behaviors of the new slender steel-concrete composite columns that are named after steel tubular columns filled with steel-reinforced high-strength concrete(STSRHC), the mechanical models of slender STSRHC are established for the analysis with the finite element software ABAQUS. There are seven influencing factors on the mechanical behaviors of slender STSRHC, they are: slender ratio, eccentricity, the thickness of steel tube, the yield stress of steel tube, the yield stress of inserted steel, the cube strength of high-strength concrete, the shape of inserted steel cross section. The results show the results calculated by software have good agreements with the tested ones; slender ratio, eccentricity and the thickness are the most effective factors on the mechanical properties of slender STSRHC.


Sign in / Sign up

Export Citation Format

Share Document