Experimental Study on Compressive Bearing Capacity of High Strength Concrete-Filled Steel Tube Composite Columns

2011 ◽  
Vol 368-373 ◽  
pp. 410-414 ◽  
Author(s):  
Hong Zhen Kang ◽  
Lei Yao ◽  
Xi Min Song ◽  
Ying Hua Ye

To study axial compressive strength of high strength concrete-filled steel tube composite columns, tests of 18 specimens were carried out. Parameters of the specimens were the confinement index of concrete-filled steel tube, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. Test results show that the concrete-filled steel tube and the reinforced concrete deformed simultaneously in the axial direction before and at the peak value of axial compressive force; after failure of the reinforced concrete, the concrete-filled steel tube can still bear the axial load and deformation; the main influential factors of axial compressive capacity are confinement index, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. The accuracy of the formula of axial compressive strength of composite columns provided by CECS 188:2005 is proved by the test results of this paper.

2019 ◽  
Vol 23 (4) ◽  
pp. 794-809
Author(s):  
Yong Yang ◽  
Xing Du ◽  
Yunlong Yu ◽  
Yongpu Pan

The ultra-high-strength concrete-encased concrete-filled steel tube column consists of a concrete-filled steel tube core and a rectangle-shaped reinforced concrete encasement. This article presents the seismic performance analysis of ultra-high-strength concrete-encased concrete-filled steel tube columns subjected to cyclic loading. Based on the measured load-lateral displacement hysteresis curves of six ultra-high-strength concrete-encased concrete-filled steel tube columns and two conventional RC columns, the seismic behaviours, such as the ductility, energy dissipation, stiffness and load-bearing capacity, were analysed. The effects of the arrangement of the stirrups and the layout of the prestressed steel strips on the seismic performance of the composite columns were critically examined. The test results indicated that the ductility and energy dissipation performance of the ultra-high-strength concrete-encased concrete-filled steel tube columns were increased by 74.8% and 162.7%, respectively, compared with the conventional columns. The configuration of the prestressed steel strip increased the ductility of the composite column by 28.9%–63% and increased the energy consumption performance by 160.2%–263.3%. By reducing the stirrup spacing and using prestressed steel strips, the concrete-filled steel tube core columns could be effectively confined, leading to a great enhancement in ductility, energy dissipation, stiffness and load-bearing capacity.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1493 ◽  
Author(s):  
In-Hwan Yang ◽  
Jihun Park

The thermal conductivity of concrete is a key factor for efficient energy consumption in concrete buildings because thermal conductivity plays a significant role in heat transfer through concrete walls. This study investigated the effects of replacing fine aggregates with coal bottom ash (CBA) and the influence of curing age on the thermal properties of high-strength concrete with a compressive strength exceeding 60 MPa. The different CBA aggregate contents included 25%, 50%, 75%, and 100%, and different curing ages included 28 and 56 days. For concrete containing CBA fine aggregate, the thermal and mechanical properties, including the unit weight, thermal conductivity, compressive strength, and ultrasonic velocity, were measured. The experimental results reveal that the unit weight and thermal conductivity of the CBA concrete were highly dependent on the CBA content. The unit weight, thermal conductivity, and compressive strength of the concrete decreased as the CBA content increased. Relationships between the thermal conductivity and the unit weight, thermal conductivity and compressive strength of the CBA concrete were proposed in the form of exponential functions. The equations proposed in this study provided predictions that were in good agreement with the test results. In addition, the test results show that there was an approximately linear relationship between the thermal conductivity and ultrasonic velocity of the CBA concrete.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alireza Mohammadi Bayazidi ◽  
Gai-Ge Wang ◽  
Hamed Bolandi ◽  
Amir H. Alavi ◽  
Amir H. Gandomi

This paper presents a new multigene genetic programming (MGGP) approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.


2014 ◽  
Vol 926-930 ◽  
pp. 645-648 ◽  
Author(s):  
Xu Rong Li ◽  
Hong Guang Ji ◽  
Jun Wang ◽  
Cheng Lin Song

In order to study the strength change of high strength concrete shaft lining structure in underground complex environment resisting composite salt damage erosion, C70 high strength concrete test specimens were made and composite salt disaster solutions of different concentrations were compounded. The test results show that the coefficient of compressive strength and flexural strength of high strength concrete increase in early corrosion and then decline. The strength of specimen declines more quickly in higher corrosion solution concentration in latter time. The change law of the flexural strength is more complex than the compressive strength. Composite salt disaster solutions have little effect for no damage high strength concrete.


Sign in / Sign up

Export Citation Format

Share Document