Seismic response of concrete gravity dams under near field and far field ground motions

2019 ◽  
Vol 196 ◽  
pp. 109292 ◽  
Author(s):  
Soumya Gorai ◽  
Damodar Maity
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dora Foti

Several steel moment-resisting framed buildings were seriously damaged during Northridge (1994); Kobe (1995); Kocaeli, Turkey (1999), earthquakes. Indeed, for all these cases, the earthquake source was located under the urban area and most victims were in near-field areas. In fact near-field ground motions show velocity and displacement peaks higher than far-field ones. Therefore, the importance of considering near-field ground motion effects in the seismic design of structures is clear. This study analyzes the seismic response of five-story steel moment-resisting frames subjected to Loma Prieta (1989) earthquake—Gilroy (far-field) register and Santa Cruz (near-field) register. The design of the frames verifies all the resistance and stability Eurocodes’ requirements and the first mode has been determined from previous shaking-table tests. In the frames two diagonal braces are installed in different positions. Therefore, ten cases with different periods are considered. Also, friction dampers are installed in substitution of the braces. The behaviour of the braced models under the far-field and the near-field records is analysed. The responses of the aforementioned frames equipped with friction dampers and subjected to the same ground motions are discussed. The maximum response of the examined model structures with and without passive dampers is analysed in terms of damage indices, acceleration amplification, base shear, and interstory drifts.


2021 ◽  
Vol 11 (4) ◽  
pp. 1740
Author(s):  
Van Bac Nguyen ◽  
Jungwon Huh ◽  
Bismark Kofi Meisuh ◽  
Jongwoo Kim ◽  
Inn-Joon Park

In this study, the seismic response of a container crane under near-field and far-field ground motions was investigated using a shaking table test on a 1/20 scale crane. The 1/20 scale crane was designed and fabricated based on the similitude laws, in which three independent quantities: geometric length, acceleration, and elastic modulus, were used to design the 1/20 scale crane. A series of shaking table tests were conducted at the Seismic Research and Test Center, Pusan National University, Yangsan Campus to evaluate the seismic response of the scale crane under near-field and far-field ground motions. The results show that the near-field ground motions can cause larger internal forces (that is, axial force and two bending moments) in the landside and seaside legs and larger portal drift than the far-field ground motions. The portal drift of the container crane subjected to the near-field ground motions was 43% higher than that of the container crane subjected to the far-field ground motions. Furthermore, when subjected to the near-field ground motion, the bending moment in the crane’s portal leg was 37% higher than the bending moment when the crane was subjected to the far-field ground motions.


Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


Sign in / Sign up

Export Citation Format

Share Document