Fragility analysis of reticulated domes subjected to multiple earthquakes

2020 ◽  
Vol 211 ◽  
pp. 110450
Author(s):  
Yingnan Zhang ◽  
Xudong Zhi ◽  
Feng Fan
2019 ◽  
Vol 33 (4) ◽  
pp. 04019044 ◽  
Author(s):  
Xing Fu ◽  
Hong-Nan Li ◽  
Li Tian ◽  
Jia Wang ◽  
Hu Cheng

2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


2021 ◽  
Vol 19 (6) ◽  
pp. 2483-2504
Author(s):  
Luigi Di Sarno ◽  
Jing-Ren Wu

AbstractThis paper presents the fragility assessment of non-seismically designed steel moment frames with masonry infills. The assessment considered the effects of multiple earthquakes on the damage accumulation of steel frames, which is an essential part of modern performance-based earthquake engineering. Effects of aftershocks are particularly important when examining damaged buildings and making post-quake decisions, such as tagging and retrofit strategy. The procedure proposed in the present work includes two phase assessment, which is based on incremental dynamic analyses of two refined numerical models of the case-study steel frame, i.e. with and without masonry infills, and utilises mainshock-aftershock sequences of natural earthquake records. The first phase focuses on the undamaged structure subjected to single and multiple earthquakes; the effects of masonry infills on the seismic vulnerability of the steel frame were also considered. In the second phase, aftershock fragility curves were derived to investigate the seismic vulnerability of infilled steel frames with post-mainshock damage caused by mainshocks. Comparative analyses were conducted among the mainshock-damaged structures considering three post-mainshock damage levels, including no damage. The impact of aftershocks was then discussed for each mainshock-damage level in terms of the breakpoint that marks the onset of exceeding post-mainshock damage level, as well as the probability of exceeding of superior damage level due to more significant aftershocks. The evaluation of the efficiency of commonly used intensity measures of aftershocks was also carried out as part of the second phase of assessment.


Sign in / Sign up

Export Citation Format

Share Document