Bond strength of reinforcing bars in ultra-high performance concrete: Experimental study and fiber–matrix discrete model

2021 ◽  
Vol 248 ◽  
pp. 113290
Author(s):  
Jianan Qi ◽  
Zhao Cheng ◽  
Zhongguo John Ma ◽  
Jingquan Wang ◽  
Jiaping Liu
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4990
Author(s):  
Petr Pokorný ◽  
Jiří Kolísko ◽  
David Čítek ◽  
Michaela Kostelecká

The study explores the effect of elevated temperatures on the bond strength between prestressing reinforcement and ultra-high performance concrete (UHPC). Laboratory investigations reveal that the changes in bond strength correspond well with the changes in compressive strength of UHPC and their correlation can be mathematically described. Exposition of specimens to temperatures up to 200 °C does not reduce bond strength as a negative effect of increasing temperature is outweighed by the positive effect of thermal increase on the reactivity of silica fume in UHPC mixture. Above 200 °C, bond strength significantly reduces; for instance, a decrease by about 70% is observed at 800 °C. The decreases in compressive and bond strengths for temperatures above 400 °C are related to the changes of phase composition of UHPC matrix (as revealed by X-ray powder diffraction) and the changes in microstructure including the increase of porosity (verified by mercury intrusion porosimetry and observation of confocal microscopy) and development cracks detected by scanning electron microscopy. Future research should investigate the effect of relaxation of prestressing reinforcement with increasing temperature on bond strength reduction by numerical modelling.


2020 ◽  
Vol 10 (2) ◽  
pp. 153-164
Author(s):  
Hui Zheng ◽  
Dongdong Zhou ◽  
Xinfeng Yin ◽  
Lei Wang

Ultra-high-performance concrete (UHPC) material, a new type of cement-based composite material, is usually employed in the bridge engineering. The transfer and anchorage length of steel strand in UHPC material is different from that in ordinary concrete; nevertheless, few design standards are found that how to anchor the transfer and anchoring length of steel strand in UHPC material under normal curing. Through central pull-out test under the different conditions of protective layer thickness and embedded length, the load-slip curves, failure modes, and bond strength of 36 UHPC material specimens under normal curing were studied. The experimental results showed that the ultimate bond stress between UHPC material and steel strand under natural curing conditions is 7.01∼11.68 MPa. When the compressive strength of cube was 157 MPa; the bond strength under natural curing was smaller than that under thermal curing; when the thickness of the protective layer of steel strand with a diameter of 15.2 mm is greater than 30 mm, it had a little influence on bond strength. The regression analysis of the test results based on the experimental results proves that the recommended formulas for the design of transfer length and anchorage length of steel strand in UHPC material were in great agreement with the results of published studies.


2011 ◽  
Vol 194-196 ◽  
pp. 956-960 ◽  
Author(s):  
Yan Zhou Peng ◽  
Kai Chen ◽  
Shu Guang Hu

The interfacial properties of reactive powder concretes (RPCs), other known as ultra-high performance concrete (UHPC), containing steel slag powder and ultra fine fly ash are studied in this paper. The microstrctural characterization of interfacial transition zones (ITZs), including the aggregate-cement paste interfacial zone and the steel fiber-paste interfacial zone, is investigated by SEM. The microhardness of the aggregate-paste ITZ and the steel slag-paste ITZ is studied and the bond strength of steel fiber in matrix is tested through fiber pullout tests. The results indicate that the microhardness of the steel slag-paste ITZ is slightly higher than that of the aggregate-paste ITZ, which implies the advantage of the substitution of quartz powder with steel slag powder in preparation of RPCs to some degrees. Moreover, the hardness of these two ITZs is higher than that of the hardened paste. A certain amount of hydration products has been observed exsiting on the surface of steel fiber by SEM and the bond strength of steel fiber-martix is up to 9.3MPa. These interfical properties are definitely critical to obtain high performance of UHPCs containing steel slag powder and fly ash.


Sign in / Sign up

Export Citation Format

Share Document