Numerical study of using shape memory alloy-based tuned mass dampers to control seismic responses of wind turbine tower

2022 ◽  
Vol 250 ◽  
pp. 113452
Author(s):  
Haoran Zuo ◽  
Kaiming Bi ◽  
Hong Hao ◽  
Chao Li
2021 ◽  
pp. 1061-1071
Author(s):  
Gisha George ◽  
K. R. Bindhu ◽  
Anagha Krishnan Nambissan

2018 ◽  
Vol 30 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Reza Damansabz ◽  
Fathollah Taheri-Behrooz

Shape memory effect of NiTi wires is utilized to design various smart composite structures. In these systems, smart wires can induce strains in the host structure by their inherent shape memory effect and phase transformation at elevated temperatures. This article presents an experimental and numerical study on the actuation capability of shape memory alloy wires embedded in the carbon/epoxy composite. In the experimental part, hybrid shape memory alloy/carbon/epoxy composite specimens are fabricated and examined to measure induced strains in the host structure by the phase transformation of the shape memory alloy wires. Hybrid composite specimens were clamped at one end, and the shape memory alloy wires were activated using electrical resistive heating. Numerical simulations were carried out using ABAQUS software to simulate the actual thermomechanical behavior of the hybrid composite specimens. A three-dimensional finite element model based on cohesive zone modeling is used to predict interfacial debonding in hybrid composite plates. The results of the parametric study suggest that by increasing Young’s modulus of the host composites, the amount of the induced strain decreases rapidly. However, for Young’s moduli more than 20 GPa, the induced strain will stay almost constant. Moreover, it was confirmed that increasing the shape memory alloy pre-strain without controlling the actuation temperature may result in the reduction of induced strain in the host composites.


2021 ◽  
Vol 11 (15) ◽  
pp. 6809
Author(s):  
Yeong-Mo Yeon ◽  
Ki-Nam Hong ◽  
Sugyu Lee ◽  
Sang-Won Ji

This paper presents a finite element (FE) analysis for predicting the flexural behavior of reinforced concrete (RC) beams strengthened with Fe-based shape memory alloy (Fe-SMA) strips using a near surface mounted (NSM) method. Experimental results reported in the literature were used to verify the proposed FE model. FE analyses were conducted using OpenSees, a general-purpose structural FE analysis program. The RC beam specimens were modeled using a nonlinear beam-column element and a fiber element. The Concrete 02 model, Steel 01 model, and Pinching 04 model were applied to the concrete, steel reinforcement, and Fe-SMA strip in the fiber element, respectively, and the FE analysis was carried out in a displacement control method based on the Newton-Raphson method. The FE model of this study accurately predicted the initial crack load, yield load, and ultimate load. From parametric analyses, it was concluded that an increase in the compressive strength of the concrete increases the ductility of the specimen, and an increase in the level of recovery stress on the Fe-SMA strip increases the initial stiffness of the specimen.


2018 ◽  
Vol 22 (4) ◽  
pp. 1007-1017 ◽  
Author(s):  
Li Tian ◽  
Guodong Gao ◽  
Canxing Qiu ◽  
Kunjie Rong

Statistics from past strong earthquakes revealed that electricity transmission towers were vulnerable to earthquake excitations. It is necessary to mitigate the seismic responses of power transmission towers to ensure the safety of such structures. In this research, a novel shape memory alloy-tuned mass damper is proposed, and seismic vibration control of power transmission tower using shape memory alloy-tuned mass damper based on three types of shape memory alloy materials (i.e. NiTi, M-CuAlBe, P-CuAlBe) is analyzed. The detailed three-dimensional finite element model of a power transmission tower incorporated with shape memory alloy-tuned mass damper is developed using numerical simulation software ANSYS. The control effects of shape memory alloy-tuned mass damper on the seismic vibration of power transmission tower are assessed using nonlinear time history analysis method. The interested seismic performance indices include displacement, acceleration, and base shear force. In addition to the shape memory alloy materials, the influence of seismic intensity and frequency ratio are conducted for the optimal design. It is shown that installing shape memory alloy-tuned mass damper well reduced the seismic responses of power transmission tower. The comparison between different shape memory alloys indicated that the damping of the shape memory alloy-tuned mass damper is beneficial to mitigate the vibrations.


Sign in / Sign up

Export Citation Format

Share Document