Numerical Study of the Column Reinforced with Shape Memory Alloy

2021 ◽  
pp. 1061-1071
Author(s):  
Gisha George ◽  
K. R. Bindhu ◽  
Anagha Krishnan Nambissan
2018 ◽  
Vol 30 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Reza Damansabz ◽  
Fathollah Taheri-Behrooz

Shape memory effect of NiTi wires is utilized to design various smart composite structures. In these systems, smart wires can induce strains in the host structure by their inherent shape memory effect and phase transformation at elevated temperatures. This article presents an experimental and numerical study on the actuation capability of shape memory alloy wires embedded in the carbon/epoxy composite. In the experimental part, hybrid shape memory alloy/carbon/epoxy composite specimens are fabricated and examined to measure induced strains in the host structure by the phase transformation of the shape memory alloy wires. Hybrid composite specimens were clamped at one end, and the shape memory alloy wires were activated using electrical resistive heating. Numerical simulations were carried out using ABAQUS software to simulate the actual thermomechanical behavior of the hybrid composite specimens. A three-dimensional finite element model based on cohesive zone modeling is used to predict interfacial debonding in hybrid composite plates. The results of the parametric study suggest that by increasing Young’s modulus of the host composites, the amount of the induced strain decreases rapidly. However, for Young’s moduli more than 20 GPa, the induced strain will stay almost constant. Moreover, it was confirmed that increasing the shape memory alloy pre-strain without controlling the actuation temperature may result in the reduction of induced strain in the host composites.


2021 ◽  
Vol 11 (15) ◽  
pp. 6809
Author(s):  
Yeong-Mo Yeon ◽  
Ki-Nam Hong ◽  
Sugyu Lee ◽  
Sang-Won Ji

This paper presents a finite element (FE) analysis for predicting the flexural behavior of reinforced concrete (RC) beams strengthened with Fe-based shape memory alloy (Fe-SMA) strips using a near surface mounted (NSM) method. Experimental results reported in the literature were used to verify the proposed FE model. FE analyses were conducted using OpenSees, a general-purpose structural FE analysis program. The RC beam specimens were modeled using a nonlinear beam-column element and a fiber element. The Concrete 02 model, Steel 01 model, and Pinching 04 model were applied to the concrete, steel reinforcement, and Fe-SMA strip in the fiber element, respectively, and the FE analysis was carried out in a displacement control method based on the Newton-Raphson method. The FE model of this study accurately predicted the initial crack load, yield load, and ultimate load. From parametric analyses, it was concluded that an increase in the compressive strength of the concrete increases the ductility of the specimen, and an increase in the level of recovery stress on the Fe-SMA strip increases the initial stiffness of the specimen.


2020 ◽  
Vol 31 (18) ◽  
pp. 2071-2087
Author(s):  
Majid Mohammadi Nia ◽  
Saber Moradi

Shape memory alloys have been used in developing self-centering steel moment connections. This article presents a numerical study aiming at evaluating the cyclic response sensitivity and limit states of extended endplate steel connections with shape memory alloy bolts. Three-dimensional finite element models are developed and validated against a recent experimental study. Using a statistical design-of-experiment method, the effects of 21 design factors and their interactions on the cyclic response of shape memory alloy connections are assessed. The sensitivity of six response parameters is studied. In addition, four limit states for shape memory alloy connections are discussed, including beam local buckling, bolt excessive axial strain, endplate yielding, and column flange yielding. Results show that endplate thickness, shape memory alloy bolt diameter, beam web slenderness ratio, and shape memory alloy maximum transformation strain are the most influential factors. Furthermore, endplate yielding is found to be the governing limit state in almost 80% of the analyzed connections, whereas shape memory alloy bolt excessive strain and column flange yielding are observed in less than 20% and 5% of the connections, respectively. Beam local buckling is not governing in the analyzed shape memory alloy connections designed as per the AISC 358-16 and AISC 341-16 seismic design requirements for extended endplate connections and highly ductile members.


2007 ◽  
Vol 334-335 ◽  
pp. 1153-1156
Author(s):  
Kuen Cheong Chan ◽  
Li Min Zhou

A numerical study of the static behaviours of composite strip with bifurcated type shape memory alloy pins has been conducted. The case of bifurcated type shape memory alloy pins inserted inside the composite strip around the hole to reinforce the laminate, which was subjected to the axial stress was simulated. The models for stress analysis were established by using ANSYS finite element programme. Two types of shape memory alloy pins were proposed to insert along the through thickness direction of the carbon fibre woven fabric composite strip to induce the clamping force. The pre-tensioned load was applied to the shape memory alloy pins in order to reduce occurrence of delamination in the laminate. Three-dimensional elements and contact elements were used to simulate the contact between the composite laminate and shape memory alloy pin to investigate the stress distribution around the hole in the composite strip. The effect of pre-strain of shape memory alloy on the stresses inside composite was studied. The results show that the stress characteristics of the button-shaped and bifurcated shape memory alloy pin models are similar; however, the stresses for the button-shaped pin model are lower. The tensile and compressive stresses, both in button-shaped and bifurcated pin models, are strongly dependent on the percentage of pre-strain of the shape memory alloy. It is therefore concluded that the shape memory alloy pin method was significantly reduced the stress concentration of the composite strip laminate.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Y. M. Parulekar ◽  
G. R. Reddy

Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs) have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect) or removing stress (pseudoelastic effect). Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.


Sign in / Sign up

Export Citation Format

Share Document