scholarly journals Deformation recovery of reinforced concrete beams made with recycled coarse aggregates

2022 ◽  
Vol 251 ◽  
pp. 113482
Author(s):  
Sindy Seara-Paz ◽  
Belén González-Fonteboa ◽  
Fernando Martínez-Abella ◽  
Javier Eiras-López
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3321
Author(s):  
Hyunjin Ju ◽  
Meirzhan Yerzhanov ◽  
Alina Serik ◽  
Deuckhang Lee ◽  
Jong R. Kim

The consumption of structural concrete in the construction industry is rapidly growing, and concrete will remain the main construction material for increasing urbanization all over the world in the near future. Meanwhile, construction and demolition waste from concrete structures is also leading to a significant environmental problem. Therefore, a proper sustainable solution is needed to address this environmental concern. One of the solutions can be using recycled coarse aggregates (RCA) in reinforced concrete (RC) structures. Extensive research has been conducted in this area in recent years. However, the usage of RCA concrete in the industry is still limited due to the absence of structural regulations appropriate to the RCA concrete. This study addresses a safety margin of RCA concrete beams in terms of shear capacity which is comparable to natural coarse aggregates (NCA) concrete beams. To this end, a database for reinforced concrete beams made of recycled coarse aggregates with and without shear reinforcement was established, collecting the shear specimens available from various works in the existing literature. The database was used to statistically identify the strength margin between RCA and NCA concrete beams and to calculate its safety margin based on reliability analysis. Moreover, a comparability study of RCA beams was conducted with its control specimens and with a database for conventional RC beams.


2018 ◽  
Vol 176 ◽  
pp. 593-607 ◽  
Author(s):  
Sindy Seara-Paz ◽  
Belén González-Fonteboa ◽  
Fernando Martínez-Abella ◽  
Diego Carro-López

2020 ◽  
Author(s):  
◽  
Hoosen Ahmed Jajbhay

Research to accurately predict the shear capacity of reinforced concrete beams without shear reinforcement has been ongoing since the early 20th century. Aggregate interlock of the coarse aggregates at the shear crack interface is one of the internal mechanisms of shear transfer and a major contributor to the shear capacity of slender beams. It is plausible, therefore, to investigate if the coarse aggregate itself influences the shear capacity of a concrete beam. The influence of the type of coarse aggregate on the shear capacity of beams without shear reinforcement was investigated in this study. From the literature study an understanding of the properties of coarse aggregates was gained, the internal mechanisms of shear transfer in reinforced concrete beams without shear reinforcement were determined, and the parameters influencing shear strength were identified. Based on this information an experimental program was designed. Eighteen reinforced concrete beams without shear reinforcement were cast. The beams were cast from three different types of coarse aggregates commonly used in the Durban area, i.e., dolerite, quartzite and tillite. For each type of coarse aggregate two variations were tested, i.e., 13 mm and 19 mm maximum aggregate sizes. For each size of coarse aggregate, three concrete strengths were tested. The beams were loaded in a beam press, by applying an increasing point load offset from midspan to induce cracking on the shorter side, until shear failure of the beam occurred. For the three concrete strengths, beams cast from dolerite had the highest shear capacity while beams cast from tillite had less shear capacity than beams cast from quartzite coarse aggregate. Furthermore, beams cast from 13 mm maximum size coarse aggregate had higher shear capacity than beams cast from 19 mm aggregate. The conclusion may be drawn that the type and size of coarse aggregate does influence the shear strength of a reinforced concrete beam without shear reinforcement.


2013 ◽  
Vol 319 ◽  
pp. 440-443
Author(s):  
Seung Hun Kim ◽  
Yong Taeg Lee ◽  
Tae Soo Kim ◽  
Seong Uk Hong

This study evaluates the flexural performance of reinforced concrete beams with GFRP(Glass Fiber Reinforced Polymer) bars and RCA(Recycled Coarse Aggregates). A total of four specimens with various replacement ratios of RCA (0%, 30%, 50%, and 100%) were tested. An investigation was performed on the influence of RCA with various replacement ratios on load-carrying capacity, post cracking stiffness, cracking pattern, and ductility. The test results showed that replacement ratios of RCA had not a bad effect on concrete compressive strength or flexural strength of beams. They were compared with the design flexural strength and the nominal moment predictions of ACI Code.


2019 ◽  
Vol 9 (1) ◽  
pp. 3826-3831
Author(s):  
M. Oad ◽  
A. H. Buller ◽  
B. A. Memon ◽  
N. A. Memon ◽  
Z. A. Tunio ◽  
...  

This research paper presents an experimental evaluation of the effect of water-cement ratio on the flexural strength of reinforced concrete beams made with 50% replacement of coarse aggregates with recycled concrete aggregates (RCA). 72 reinforced concrete beams were cast using 0.54, 0.6, 0.65 and 0.70 water-cement ratio. In each ratio, 12 beams were cast using RCA and 3 beams were cast using all-natural coarse aggregates (NCA). Beams were cured for 7 and 28 days. After curing, all beams were tested with central point load in a universal load testing machine. From the obtained results, it is observed that the maximum reduction in flexural strength of RCA beams is about 28% when compared to the 0.54 w/c ratio beams of the same group and 31.75% in comparison to NCA beams cast with same w/c ratio. The maximum deflection and average strain in beams remained within limits. The observed cracking pattern shows shear failure of all beams.


Sign in / Sign up

Export Citation Format

Share Document