Long-term flexural performance of reinforced concrete beams with recycled coarse aggregates

2018 ◽  
Vol 176 ◽  
pp. 593-607 ◽  
Author(s):  
Sindy Seara-Paz ◽  
Belén González-Fonteboa ◽  
Fernando Martínez-Abella ◽  
Diego Carro-López
2013 ◽  
Vol 319 ◽  
pp. 440-443
Author(s):  
Seung Hun Kim ◽  
Yong Taeg Lee ◽  
Tae Soo Kim ◽  
Seong Uk Hong

This study evaluates the flexural performance of reinforced concrete beams with GFRP(Glass Fiber Reinforced Polymer) bars and RCA(Recycled Coarse Aggregates). A total of four specimens with various replacement ratios of RCA (0%, 30%, 50%, and 100%) were tested. An investigation was performed on the influence of RCA with various replacement ratios on load-carrying capacity, post cracking stiffness, cracking pattern, and ductility. The test results showed that replacement ratios of RCA had not a bad effect on concrete compressive strength or flexural strength of beams. They were compared with the design flexural strength and the nominal moment predictions of ACI Code.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3321
Author(s):  
Hyunjin Ju ◽  
Meirzhan Yerzhanov ◽  
Alina Serik ◽  
Deuckhang Lee ◽  
Jong R. Kim

The consumption of structural concrete in the construction industry is rapidly growing, and concrete will remain the main construction material for increasing urbanization all over the world in the near future. Meanwhile, construction and demolition waste from concrete structures is also leading to a significant environmental problem. Therefore, a proper sustainable solution is needed to address this environmental concern. One of the solutions can be using recycled coarse aggregates (RCA) in reinforced concrete (RC) structures. Extensive research has been conducted in this area in recent years. However, the usage of RCA concrete in the industry is still limited due to the absence of structural regulations appropriate to the RCA concrete. This study addresses a safety margin of RCA concrete beams in terms of shear capacity which is comparable to natural coarse aggregates (NCA) concrete beams. To this end, a database for reinforced concrete beams made of recycled coarse aggregates with and without shear reinforcement was established, collecting the shear specimens available from various works in the existing literature. The database was used to statistically identify the strength margin between RCA and NCA concrete beams and to calculate its safety margin based on reliability analysis. Moreover, a comparability study of RCA beams was conducted with its control specimens and with a database for conventional RC beams.


Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 55-67
Author(s):  
Omar Khalid Ali ◽  
Abdulkader Ismail Al-Hadithi ◽  
Ahmed Tareq Noaman

Structures ◽  
2019 ◽  
Vol 19 ◽  
pp. 394-410 ◽  
Author(s):  
Mohammed Haloob Al-Majidi ◽  
Andreas P. Lampropoulos ◽  
Andrew B. Cundy ◽  
Ourania T. Tsioulou ◽  
Salam Alrekabi

Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 234 ◽  
Author(s):  
Yingwu Zhou ◽  
Yaowei Zheng ◽  
Lili Sui ◽  
Biao Hu ◽  
Xiaoxu Huang

Steel corrosion is considered as the main factor for the insufficient durability of concrete structures, especially in the marine environment. In this paper, to further inhibit steel corrosion in a high chloride environment and take advantage of the dual-functional carbon fiber reinforced polymer (CFRP), the impressed current cathodic protection (ICCP) technique was applied to the hybrid-reinforced concrete beam with internally embedded CFRP bars and steel fiber reinforced polymer composite bar (SFCB) as the anode material while the steel bar was compelled to the cathode. The effect of the new ICCP system on the flexural performance of the hybrid-reinforced concrete beam subjected to corrosion was verified experimentally. First, the electricity-accelerated precorrosion test was performed for the steel bar in the hybrid-reinforced beams with a target corrosion ratio of 5%. Then, the dry–wet cycles corrosion was conducted and the ICCP system was activated simultaneously for the hybrid-reinforced concrete beam for 180 days. Finally, the three-point bending experiment was carried out for the hybrid-reinforced concrete beams. The steel bars were taken out from the concrete to quantitatively measure the corrosion ratio after flexural tests. Results showed that the further corrosion of steel bars could be inhibited effectively by the ICCP treatment with the CFRP bar and the SFCB as the anode. Additionally, the ICCP system showed an obvious effect on the flexural behavior of the hybrid-reinforced concrete beams: The crack load and ultimate load, as well as the stiffness, were enhanced notably compared with the beam without ICCP treatment. Compared with the SFCB anode, the ICCP system with the CFRP bar as the anode material was more effective for the hybrid-reinforced concrete beam to prevent the steel corrosion.


Sign in / Sign up

Export Citation Format

Share Document