Nonlinear deformation behaviour and design of welded stainless steel I-section flexural members

2022 ◽  
Vol 252 ◽  
pp. 113683
Author(s):  
X.W. Chen ◽  
H.X. Yuan ◽  
X.X. Du ◽  
Z.W. Zhu
2020 ◽  
Vol 14 (2) ◽  
pp. 239-244
Author(s):  
Imre Kiss ◽  
Vasile Alexa

The knowledge about the characteristics of deformability (deformation resistance and plasticity) has for the technologist, as well as for the designer and researcher, a great practical significance, because they are important elements in establishing a correct technological process. The change of deformation conditions existing in the industrial process, such as the temperature and rate of deformation, are difficult to consider for correcting the deformability determined by testing. The chemical composition of the material influences the plasticity and its deformation resistance both by the nature and distribution of the alloying elements and by the phase transformations they produce. In this paper, through "deformability", we cover all properties characterizing the deformation behaviour of alloys. In this sense, "deformation resistance" is expressed through the unit strain required to produce a certain degree of plastic deformation, under the conditions of a particular diagram of tensions, deformations and deformation rates, in the absence of external friction forces. Plasticity, being the ability of metallic materials to deform plastic under the action of external forces, is influenced by a number of material characteristics (chemical composition, structure) and other factors characteristic of the deformation (temperature, degree and speed of deformation, applied mechanical scheme). Plasticity is characterized, in the torsion test, by the number of rotations made by the specimen until breakage. A number of methods have already been used for the study of deformability. This study includes the results of hot torsion tests conducted to find the plasticity and deformability characteristics of ferritic stainless steel (non–hardenable stainless steel, grade X6Cr17), which is a flexible grade of the stainless steel family with properties closely matching those of the more popular and expensive austenitic grade.


2019 ◽  
Vol 300 ◽  
pp. 08004
Author(s):  
Cainã Bemfica ◽  
Edgar Mamiya ◽  
Fábio Castro

This work investigates the axial-torsional fatigue and cyclic deformation behaviour of 304L stainless steel at room temperature. Four fully reversed strain-controlled loading paths (axial, torsional, proportional axial-torsional, and 90º out-of-phase axial-torsional) and a fully-reversed shear strain-controlled with static axial stress loading were investigated. For axial, torsional, torsional with static stress and few proportional experiments, an initial cyclic softening was followed by secondary hardening related to martensitic transformation. Secondary hardening was not observed for non-proportional loading nor for some proportional experiments. The influence of the non-stabilized cyclic deformation behaviour on the fatigue life estimates of two multiaxial critical plane fatigue models (Smith–Watson–Topper and Fatemi–Socie) was investigated. Life estimates based on the stress-strain hysteresis loops corresponding to the maximum softening and to the half-life were similar for the two models.


Sign in / Sign up

Export Citation Format

Share Document