scholarly journals Axial-torsional fatigue and cyclic deformation of 304L stainless steel at room temperature

2019 ◽  
Vol 300 ◽  
pp. 08004
Author(s):  
Cainã Bemfica ◽  
Edgar Mamiya ◽  
Fábio Castro

This work investigates the axial-torsional fatigue and cyclic deformation behaviour of 304L stainless steel at room temperature. Four fully reversed strain-controlled loading paths (axial, torsional, proportional axial-torsional, and 90º out-of-phase axial-torsional) and a fully-reversed shear strain-controlled with static axial stress loading were investigated. For axial, torsional, torsional with static stress and few proportional experiments, an initial cyclic softening was followed by secondary hardening related to martensitic transformation. Secondary hardening was not observed for non-proportional loading nor for some proportional experiments. The influence of the non-stabilized cyclic deformation behaviour on the fatigue life estimates of two multiaxial critical plane fatigue models (Smith–Watson–Topper and Fatemi–Socie) was investigated. Life estimates based on the stress-strain hysteresis loops corresponding to the maximum softening and to the half-life were similar for the two models.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hala Messai ◽  
Salim Meziani ◽  
Athmane Fouathia

Purpose The purpose of this paper is to highlight the performance of the Chaboche model in relation to the database identification, tests with imposed deformations were conducted at room temperature on 304L stainless steel specimens. Design/methodology/approach The first two tests were performed in tension-compression between ±0.005 and ±0.01; in the third test, each cycle is composed of the combination of a compression tensile cycle between ±0.01 followed by a torsion cycle between ±0.01723 (non-proportional path), and the last, uniaxial ratcheting test with a mean stress between 250 MPa and −150 MPa. Several identifications of a Chaboche-type model were then performed by considering databases composed of one or more of the cited tests. On the basis of these identifications, the simulations of a large number of ratchet tests in particular were carried out. Findings The results present the effect of the optimized parameters on the prediction of the behavior of materials which is reported in the graphs, Optimizations 1 and 2 of first and second tests and Optimization 4 of the third test giving a good prediction of the increasing/decreasing pre-deformation amplitude. Originality/value The quality of the model's predictions strongly depends on the richness of the database used for the identification of the parameters.


2011 ◽  
Vol 415-417 ◽  
pp. 2318-2321 ◽  
Author(s):  
Qian Hua Kan ◽  
Wen Yi Yan ◽  
Guo Zheng Kang ◽  
Su Juan Guo

The cyclic deformation including the ratcheting of TA16 titanium alloy was investigated experimentally at room temperature. Experimental results under symmetrical strain-controlled cyclic loading with various strain amplitudes show that the responded stress amplitude keeps almost unchanged with the increasing number of cycles. It is concluded that TA16 titanium alloy can be regarded as a cyclic stable material. Remarkable ratcheting was also observed under asymmetrical stress-controlled cyclic loading, i.e., ratcheting strain increases with the increasing number of cycles. The ratcheting strain strongly depends on the stress level and increases with the increase of applied mean stress, stress amplitude and stress ratio. These findings are useful to reasonably model the cyclic deformation of TA16 titanium alloy.


1986 ◽  
Vol 53 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Han-Ryong Pak ◽  
Lieh-Ming Hsiung ◽  
Masaharu Kato

Author(s):  
Yajing Li ◽  
Dunji Yu ◽  
Xu Chen

Effects of strain amplitude and loading path on cyclic deformation behavior and martensitic transformation of 304 stainless steel were experimentally investigated at room temperature. Series of symmetrical strain-control low cycle fatigue tests with strain amplitude ranging from 0.4% to 1.0% and various loading paths (uniaxial, torsional, proportional, rhombus, square and circular) with the same equivalent strain amplitude of 0.5% were carried out. Three-stage cyclic deformation behavior containing initial hardening, cyclic softening or saturation, and secondary hardening as well as near-linear relationship between α’-martensite content and number of cycles was observed during the whole life regime as for each test. Besides, a nearly linear relation between peak stress and α’-martensite content was found during secondary hardening stage. Furthermore, higher strain amplitude or non-proportionality of loading path resulted in higher cyclic stress response and α’-martensite content growth rate, defined by the slope of curves of α’-martensite content versus number of cycles.


Sign in / Sign up

Export Citation Format

Share Document