scholarly journals Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal

Energy Policy ◽  
2020 ◽  
Vol 144 ◽  
pp. 111642 ◽  
Author(s):  
José M. Belbute ◽  
Alfredo M. Pereira
Author(s):  
Kelly M. Twomey ◽  
Michael E. Webber

The United States uses approximately 5% of its primary energy and 6% of its electricity to pump, convey, treat, distribute, heat, and recondition water in the US public water supply. Allocating this energy towards water has contributed to a national public water distribution system that is considered among the best in the world, providing its users with a clean and reliable water supply. This water supply, treated to stringent water standards defined by the Environmental Protection Agency’s Safe Drinking Water Act, has been critical to the health and livelihood of United States’ citizens. However, this energy-expenditure comes at an environmental cost, since the majority of water-related energy is derived from burning fossil fuels. Fossil-fuel combustion emits carbon-dioxide, a greenhouse gas that has become of concern in recent years because of its connection to anthropogenic climate change. The amount of carbon-dioxide that is emitted from fossil-fuel combustion is principally a function of the quantity and type of fuel that is burned for energy. This first-order analysis quantifying national water-related carbon dioxide emissions is the second in a series of several analyses by the authors, quantifying the energy and greenhouse emissions embedded in the US public water supply. Results indicate that water withdrawal, conveyance, treatment, distribution, end-use preparation, and wastewater treatment produces approximately 301 million metric tonnes of CO2 emissions annually. This quantity is 5.1% of total US CO2 emissions in 2009, which is approximately equal to emissions from the gasoline consumed by one-quarter of the US passenger fleet in the same year. Considering that the emissions associated with water for industrial, municipal and self-supplied sectors (such as agriculture) were not included in this analysis, the actual quantity of carbon emissions released as a result of water-related activities is likely to be higher. Consequently, identifying efficiency measures and conservation schemes to reduce the amount of water-related energy consumed in the US might be significant in achieving future greenhouse gas emission reduction goals.


2012 ◽  
Vol 9 (1) ◽  
pp. 1299-1376 ◽  
Author(s):  
R. J. Andres ◽  
T. A. Boden ◽  
F.-M. Bréon ◽  
P. Ciais ◽  
S. Davis ◽  
...  

Abstract. This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50%. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.


2015 ◽  
Vol 15 (20) ◽  
pp. 29591-29638 ◽  
Author(s):  
S. Newman ◽  
X. Xu ◽  
K. R. Gurney ◽  
Y.-K. Hsu ◽  
K.-F. Li ◽  
...  

Abstract. Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion for both sites and broken those down into contributions from petroleum/gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena CO2 emissions from fossil fuel combustion during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. For natural gas, inferred emissions are out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but are consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 emissions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare emissions from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in fall and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.


2016 ◽  
Vol 13 (7) ◽  
pp. 2137-2149 ◽  
Author(s):  
Jean-Sébastien Landry ◽  
H. Damon Matthews

Abstract. Non-deforestation fire – i.e., fire that is typically followed by the recovery of natural vegetation – is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate–carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate–carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions – implicitly implying that they have similar effects per unit of CO2 emitted – should therefore be avoided, particularly when these comparisons involve gross fire emissions, because the reservoirs from which these emissions are drawn have very different residence times (millions of years for fossil fuel; years to centuries for vegetation and soil–litter). Our results also support the notion that most net emissions occur relatively soon after fire regime shifts and then progressively approach zero. Overall, our study calls for the explicit representation of fire activity as a valuable step to foster a more accurate understanding of its impacts on global carbon cycling and temperature, as opposed to conceiving fire effects as congruent with the consequences from fossil fuel combustion.


2012 ◽  
Vol 9 (5) ◽  
pp. 1845-1871 ◽  
Author(s):  
R. J. Andres ◽  
T. A. Boden ◽  
F.-M. Bréon ◽  
P. Ciais ◽  
S. Davis ◽  
...  

Abstract. This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.


2017 ◽  
Vol 24 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Artur Pawłowski ◽  
Małgorzata Pawłowska ◽  
Lucjan Pawłowski

Abstract Carbon dioxide fluxes between ecosystems of the Earth are presented. It was shown that intensifying its absorption of terrestrial ecosystems by 3.2% would prove sufficient to neutralize carbon dioxide emissions from the combustion of fossil fuels and cement production. It was shown that Polish forests absorb 84.6 million tons of CO2/year, that is 26% of emissions from fossil fuel combustion and cement production, while agricultural crops absorb 103 million tons of CO2/year. Total carbon dioxide sequestration by forests and agricultural crops amounts to 187.5 million tons of CO2/year, which is tantamount to 59% of emissions from fossil fuel combustion and cement production. Forestation of marginal soils would further increase carbon dioxide absorption in Poland by 20.6 million tons of CO2/year. Moreover, if plants were sown in order to produce green manure - instead of leaving soil fallow - sequestration could still be boosted by another 6.2 million tons of CO2/year.


Sign in / Sign up

Export Citation Format

Share Document