scholarly journals Are we at risk because of road dust? An ecological and health risk assessment of heavy metals in a rapid growing city in South India

2022 ◽  
pp. 100165
Author(s):  
Mohan Suvetha ◽  
Partheeban Emmanuel Charles ◽  
Anbazhagan Vinothkannan ◽  
Rajendran Rajaram ◽  
Bilal Ahamad Paray ◽  
...  
2019 ◽  
Vol 100 ◽  
pp. 00026 ◽  
Author(s):  
Gabriela Hajduga ◽  
Agnieszka Generowicz ◽  
Małgorzata Kryłów

Road dust is viewed as one of the major contributors for metal pollution in urban environment and long-term exposure can cause chronic damage through ways of inhalation, ingestion, and dermal contact so they pose a great threat on human health. The article presents a study conducted to determine the concentrations of seven heavy metals in road dust from a chosen street in Cracow, and the impact of heavy metals contamination in surface street dust on human health using Health Risk Assessment. The health risk was assessed using Hazard Quotient (HQ), Health Index (HI) and Carcinogenic Risk (RI).


Author(s):  
Haseeb Tufail Moryani ◽  
Shuqiong Kong ◽  
Jiangkun Du ◽  
Jianguo Bao

The aim of this study is to identify and investigate levels of toxic heavy metals in PM2.5 fractioned road dust to better understand the associated inhalation risk and potential health impacts. To achieve this aim, concentrations of seven traffic generated heavy metals (Cu, Pb, Zn, Cd, Ni, Sb, and Cr) were determined in the PM2.5 fraction of road dust samples from four different locations (offices, residential, hospital, and school) in two cities (Karachi and Shikarpur) of Pakistan using ICP-MS. The average concentration values of heavy metals in Karachi were as follows: 332.9 mg/kg Cu, 426.6 mg/kg Pb, 4254.4 mg/kg Zn, 62.3 mg/kg Cd, 389.7 mg/kg Ni, 70.4 mg/kg Sb, 148.1 mg/kg Cr, whereas the average concentration values of heavy metals in Shikarpur were 245.8 mg/kg Cu, 538.4 mg/kg Pb, 8351.0 mg/kg Zn, 57.6 mg/kg Cd, 131.7 mg/kg Ni, 314.5 mg/kg Sb, 346.6 mg/kg Cr. The pollution level was assessed through two pollution indices enrichment factor (EF) and geoaccumulation index (Igeo). These indices showed moderate to extreme level pollution in studied areas of both cities. The health risk assessment through inhalation contact was conducted according to the United States Environmental Protection Agency’s (USEPA) model for children and adults. Both non-cancerous and cancerous risks were characterised in the road dust samples for each location. As yet, there is not a single study on the concentrations of heavy metals in PM2.5 fractions of road dust in Karachi and Shikarpur, findings of this research will facilitate researchers for further investigations in current field.


2021 ◽  
Author(s):  
Shengwei Zhang ◽  
Ge Ma ◽  
Shuzhen Dong ◽  
Xiangzhou Meng ◽  
Lijun Wang

Abstract For a better regional and source-risk-based control of heavy metals in urban environments, this study provides a source-specific health risk assessment by combining the models of United States Environmental Protection Agency health risk assessment and positive matrix factorization (PMF). The calculated data were optimized by the geochemical speciation of target 10 potentially toxic heavy metals. The results demonstrated that the mean concentrations of most heavy metals in urban dust of Jinan City exceeded their corresponding background values, especially that of cadmium (Cd) and zinc (Zn) exhibiting a mean of 12.9 and 7.84 times those of their backgrounds. Cd, Zn, copper, lead and manganese in road dust existed mainly in extractable forms, exhibiting higher bio-availability. The PMF receptor model determined four sources of heavy metals in urban road dust, namely industrial discharges (41.1%), natural and coal combustion sources (27.8%), traffic emissions (22.8%), and building material and manufacturing sources (8.3%). All the studied heavy metals presented low or negligible non-carcinogenic risk (non-CR) for adults and children, while the lifetime carcinogenic risk (CR) of Cd was in an acceptable level. Regarding source-specific health risks, the highest non-CR was derived from industrial discharges, while CR from traffic emissions, which were mainly associated with the higher content and bio-availability of Pb and Cd in the dust. Moreover, the risk contributions of industrial discharges and traffic emissions were 35.9% and 60.6% for non-CR and CR, respectively, presenting a significant difference with the apportioned source characteristics, thus deep-revealing the potentially source-based risks of heavy metal in urban environment.


Sign in / Sign up

Export Citation Format

Share Document