negatively buoyant
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 32)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
pp. petgeo2021-074
Author(s):  
S.A. Stewart

Dissolving CO2 into water or brine produces a denser fluid than the CO2-free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO2 solutions opens the possibility of utilizing negative relief trapping configurations for CO2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids such as hydrocarbons or pure CO2. Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structure varies with basin type and may not be fully identified due to truncation effects arising from data coverage limitations. Similar to hydrocarbon exploration, CO2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects, however, the multiscale nature of synformal traps should be considered when estimating range of storage volumes.This article is part of the Energy Geoscience Series available at https://www.lyellcollection.org/cc/energy-geoscience-series


2021 ◽  
Author(s):  
S M Naser Shovon ◽  
Adeeb Alam ◽  
Bashir Khoda

Abstract Controlled delivery of inorganic microparticles by the dipping process can open up 3D near-net-shape production techniques through sintering, robocasting or additive manufacturing, and material joining. However, micro-scale inorganic particles (d>1 µm) have reduced surface area and higher density, making them negatively buoyant in dip-coating mixtures and challenging for high yield solid transfer through entrainment due to the density mismatch. In this work, the physical phenomenon of the particle transfer process under stirring energy with negatively buoyant, non-Brownian micro-particles from density mismatching mixture is investigated. Liquid carrier system (LCS) solution is prepared by the combination of a binder polymer and an evaporating solvent. Inorganic micro-particles are dispersed with the assistance of a magnetic stirrer to maintain the suspension characteristics of the mixture. The effect of solid loading and the binder volume fraction on solid transfer has been reported. Two coating regime is observed (i) heterogeneous coating where particles clusters are formed at a low capillary number and (ii) effective viscous regime, where full coverage can be observed on the cylindrical substrate. In our experiment, we have not observed ‘zero’ particle entrainment even at the low capillary number of the mixture, which can be attributed to the presence of binder and hydrodynamic flow of the particles due to the stirring of the mixture. The critical film thickness for particle entrainment is found as ℎ * = 0.16a for 6.5% binder and ℎ * = 0.26a for 10.5% binder, which are smaller than previously reported. Furthermore, the transferred particle matrices are compared with the analytical expression of density matching suspension. The finding of this research will help to understand the high-volume solid transfer technique and develop a novel manufacturing process.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander G. López ◽  
Raymond G. Najjar ◽  
Marjorie A. M. Friedrichs ◽  
Michael A. Hickner ◽  
Denice H. Wardrop

Public awareness of microplastics and their widespread presence throughout most bodies of water are increasingly documented. The accumulation of microplastics in the ocean, however, appears to be far less than their riverine inputs, suggesting that there is a “missing sink” of plastics in the ocean. Estuaries have long been recognized as filters for riverine material in marine biogeochemical budgets. Here we use a model of estuarine microplastic transport to test the hypothesis that the Chesapeake Bay, a large coastal-plain estuary in eastern North America, is a potentially large filter, or “sink,” of riverine microplastics. The 1-year composite simulation, which tracks an equal number of buoyant and sinking 5-mm diameter particles, shows that 94% of riverine microplastics are beached, with only 5% exported from the Bay, and 1% remaining in the water column. We evaluate the robustness of this finding by conducting additional simulations in a tributary of the Bay for different years, particle densities, particle sizes, turbulent dissipation rates, and shoreline characteristics. The resulting microplastic transport and fate were sensitive to interannual variability over a decadal (2010–2019) analysis, with greater export out of the Bay during high streamflow years. Particle size was found to be unimportant while particle density – specifically if a particle was buoyant or not – was found to significantly influence overall fate and mean duration in the water column. Positively buoyant microplastics are more mobile due to being in the seaward branch of the residual estuarine circulation while negatively buoyant microplastics are transported a lesser distance due to being in the landward branch, and therefore tend to deposit on coastlines close to their river sources, which may help guide sampling campaigns. Half of all riverine microplastics that beach do so within 7–13 days, while those that leave the bay do so within 26 days. Despite microplastic distributions being sensitive to some modeling choices (e.g., particle density and shoreline hardening), in all scenarios most of riverine plastics do not make it to the ocean, suggesting that estuaries may serve as a filter for riverine microplastics.


2021 ◽  
Author(s):  
Richard Palin ◽  
James Moore ◽  
Zeming Zhang ◽  
Guangyu Huang

Abstract The absence of ultrahigh pressure (UHP) orogenic eclogite in the geological record older than c. 0.6 Ga is problematic for evidence of subduction having begun on Earth during the Archean (4.0–2.5 Ga). Many eclogites in Phanerozoic and Proterozoic terranes occur as mafic boudins encased within low-density felsic crust, which provides positive buoyancy during subduction; however, recent geochemical proxy analysis shows that Archean continental crust was more mafic than previously thought. Here, we show via petrological modelling that secular change in the composition of upper continental crust (UCC) would make Archean continental terranes negatively buoyant in the mantle before reaching UHP conditions. Subducted or delaminated Archean continental crust passes a point of no return during metamorphism in the mantle prior to the stabilization of coesite, while Proterozoic and Phanerozoic terranes remain positively buoyant at these depths. UHP orogenic eclogite may thus readily have formed on the Archean Earth, but could not have been exhumed, weakening arguments for a Neoproterozoic onset of subduction and plate tectonics. Further, isostatic balance calculations for more mafic Archean continents indicate that the early Earth was covered by a global ocean over 1 kilometre deep.


2021 ◽  
Author(s):  
Stan Thorez ◽  
Koen Blanckaert ◽  
Ulrich Lemmin ◽  
David Andrew Barry

<p>Lake and reservoir water quality is impacted greatly by the input of momentum, heat, oxygen, sediment, nutrients and contaminants delivered to them by riverine inflows. When such an inflow is negatively buoyant, it will plunge upon contact with the receiving ambient water and form a gravity-driven current near the bed (density current). If such a current is sediment-laden, its bulk density can be higher than that of the surrounding ambient water, even if its carrying fluid has a density lower than that of the surrounding ambient water. After sufficient sediment particles have settled however, the buoyancy of the current can reverse and lead to the plume rising up from the bed, a process referred to as lofting. In a stratified environment, the river plume may then find its way into a layer of neutral buoyancy to form an intermediate current (interflow). A deeper understanding of the wide range of hydrodynamic processes related to the transitions from open-channel inflow to underflow (plunging) and from underflow to interflow (lofting) is crucial in predicting the fate of all components introduced into the lake or reservoir by the inflow.</p><p>Field measurements of the plunging inflow of the negatively buoyant Rhône River into Lake Geneva (Switzerland/France) are presented. A combination of a vessel-mounted ADCP and remote sensing cameras was used to capture the three-dimensional flow field of the plunging and lofting transition zones over a wide range of spatial and temporal scales.</p><p>In the plunge zone, the ADCP measurements show that the inflowing river water undergoes a lateral (perpendicular to its downstream direction) slumping movement, caused by its density surplus compared to the ambient lake water and the resulting baroclinic vorticity production. This effect is also visible in the remote sensing images in the form of a distinct plume of sediment-rich water with a triangular shape leading away from the river mouth in the downstream direction towards a sharp tip. A wide range of vortical structures, which most likely impact the amount of mixing taking place, is also visible at the surface in the plunging zone.</p><p>In the lofting zone, the ADCP measurements show that the underflow undergoes a lofting movement at its edges. This is most likely caused by a higher sedimentation rate due to the lower velocities at the underflow edges and leads to a part of the underflow peeling off and forming an interflow, while the higher velocity core of the underflow continues following the bed. Here, the baroclinic vorticity production works in the opposite direction as that in the plunge zone. Further downstream, as more particles have settled and the surrounding ambient water has become denser, the remaining underflow also undergoes a lofting motion. The remnants of these lofting processes show in the remote sensing images as intermittent ‘boils’ of sediment rich water reaching the surface and traces of surface layer leakage.</p>


2021 ◽  
Author(s):  
Violaine Piton ◽  
Frédéric Soulignac ◽  
Ulrich Lemmin ◽  
Graf Benjamin ◽  
Htet Kyi Wynn ◽  
...  

<p>River inflows have a major influence on lake water quality through their input of sediments, nutrients and contaminants. It is therefore essential to determine their pathways, their mixing with ambient waters and the amount and type of Suspended Particulate Matter (SPM) they carry. Two field campaigns during the stratified period took place in Lake Geneva, Switzerland, in the vicinity of the Rhône River plume, at high and intermediate river discharge. Currents, water and sediment fluxes, temperature, turbidity and particle size distribution were measured along three circular transects located at 400, 800 and 1500 m in front of the river mouth. During the surveys, the lake was thermally stratified, the negatively buoyant Rhône River plume plunged and intruded into the metalimnion as an interflow and flowed out in the streamwise direction. Along the pathway, interflow core velocities, SPM concentrations and volumes of particles progressively decreased with the distance from the mouth (by 2-3 times), while interflow cross sections and plume volume increased by 2-3 times due to entrainment of ambient water. The characteristics of the river outflow determined the characteristics of the interflows: i.e. interflow fluxes and concentrations were the highest at high discharge. Both sediment settling and interflow dilution contributed to the observed decrease of sediment discharge with distance from the mouth. The particle size distribution of the interflow was dominated by fine particles (<32 μm), which were transported up to 1500 m away from the mouth and most likely beyond, while large particles (>62 μm) have almost completely settled out before reaching 1500 m. </p>


2021 ◽  
Author(s):  
Irina Chubarenko

<p>Microplastic particles (MPs) are found in marine ice in larger quantities than in seawater, indicating that the ice is an important link in the chain of spreading of this contaminant. Some studies indicate larger MPs abundance near the ice surface, while others did not find any consistent pattern in the vertical distribution of MPs within sea ice cores. We discuss physical mechanisms of incorporation of MPs in the ice and present the results of laboratory tests, underpinning our conclusions.</p><p>First, plastic hydrophobicity is shown to cause the effect of pushing the floating MPs further up of the newly-forming ice. This leads to a concentration of MPs at the ice surface in the laboratory, while in the field the particles at the surface may by covered by snow and become a part of the upper ice layer. Under open-air test conditions, the bubbles of foamed polystyrene (density 0.04 g/cm<sup>3</sup>), initially floating at the water surface, were gone by weak wind when the firm ice was formed.</p><p>Second, the difference between freshwater and marine ice is considered. Since fresh water has its temperature of the density maximum (Tmd=3.98 C) well above the freezing point (Tfr=0 C), the freshwater ice is formed when the water column is stably stratified for a relatively long period of cooling from the Tmd down to the Tfr. Under such steady conditions, even just slightly positively/negatively buoyant MPs have enough time to rise to the surface / to settle to the bottom. In contrast, the ice in the ocean freezes when thermal convection is at work, further enhanced by the brine release. Thus, strong convection beneath the forming marine ice keeps slightly positively/negatively buoyant MPs in suspension and maintains the contact between the MPs and the forming ice. Laboratory tests show both the difference between the solid-and-transparent freshwater ice and the layered, filled with brine marine ice, and the difference in the level of their contamination.</p><p>Lastly, it is demonstrated that MPs tend to be incorporated in the ice together with air bubbles and in-between the ice plates (in brine channels). This is most probably due t plastics’ hydrophobicity.</p><p>Investigations are supported by the Russian Science Foundation, grant No 19-17-00041.</p>


2021 ◽  
Author(s):  
Chris Holloway ◽  
Jian-Feng Gu ◽  
Bob Plant ◽  
Todd Jones

<div> <div> <div> <div> <p>The normalized distributions of thermodynamic and dynamical variables both within and outside shallow clouds are investigated through a composite algorithm using large eddy simulation of the BOMEX case. The normalized magnitude is maximum near cloud center and decreases outwards. While relative humidity (RH) and cloud liquid water (<em>q<sub>l </sub></em>) decrease smoothly to match the environment, the vertical velocity, virtual potential temperature (<em>θ<sub>v </sub></em>) and potential temperature (<em>θ</em>) perturbations have more complicated behaviour towards the cloud boundary. Below the inversion layer, <em>θ<sub>v</sub></em> becomes <span>negative before the vertical velocity has turned from updraft to subsiding shell outside the cloud, indicating the presence of a transition zone where the updraft is negatively buoyant. Due to the downdraft outside the cloud and the enhanced horizontal turbulent mixing across the edge, the normalized turbulence kinetic energy (TKE) and horizontal turbulence kinetic energy (HTKE) decrease more slowly from the cloud center outwards than the thermodynamic variables. The distributions all present asymmetric structures in response to the vertical wind shear, with more negatively buoyant air, stronger downdrafts and larger TKE on the downshear side. We discuss several implications of the distributions for theoretical models and parameterizations. Positive buoyancy near cloud base is mostly due to </span><span>the virtual effect of water vapor, emphasising the role of moisture in triggering. The mean vertical velocity is found </span><span>to be approximately half the maximum vertical velocity within each cloud, providing a constraint on some models. Finally, products of normalized distributions for different variables are shown to be able to well represent the vertical heat and moisture fluxes, but they underestimate fluxes in the inversion layer because they do not capture cloud top downdrafts.</span></p> </div> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document