scholarly journals Source apportionment of fine organic carbon (OC) using receptor modelling at a rural site of Beijing: Insight into seasonal and diurnal variation of source contributions

2020 ◽  
Vol 266 ◽  
pp. 115078 ◽  
Author(s):  
Xuefang Wu ◽  
Chunrong Chen ◽  
Tuan V. Vu ◽  
D. Liu ◽  
Clarissa Baldo ◽  
...  
2020 ◽  
Author(s):  
Jinhui Gao

<p>Comprehensive measurements were conducted at the summit of Mount (Mt.) Huang, a rural site located in eastern China during the summer of 2011. They observed that ozone showed pronounced diurnal variations with high concentrations at night and low values during daytime. The Weather Research and Forecasting with Chemistry (WRF-Chem) model was applied to simulate the ozone concentrations at Mt. Huang in June 2011. With processes analysis and online ozone tagging method we coupled into the model system, the causes of this diurnal pattern and the contributions from different source regions were investigated. Our results showed that boundary layer diurnal cycle played an important role in driving the ozone diurnal variation. Further analysis showed that the negative contribution of vertical mixing was significant, resulting in the ozone decrease during the daytime. In contrast, ozone increased at night owing to the significant positive contribution of advection. This shifting of major factor between vertical mixing and advection formed this diurnal variation. Ozone source apportionment results indicated that approximately half was provided by inflow effect of ozone from outside the model domain (O<sub>3-INFLOW</sub>) and the other half was formed by ozone precursors (O<sub>3-PBL</sub>) emitted in eastern, central, and southern China. In the O<sub>3-PBL</sub>, 3.0% of the ozone was from Mt. Huang reflecting the small local contribution (O<sub>3-LOC</sub>) and the non-local contributions (O<sub>3-NLOC</sub>) accounted for 41.6%, in which ozone from the southerly regions contributed significantly, for example, 9.9% of the ozone originating from Jiangxi, representing the highest geographical contributor. Because the origin and variation of O<sub>3-NLOC</sub> was highly related to the diurnal movements in boundary layer, the similar diurnal patterns between O<sub>3-NLOC</sub> and total ozone both indicated the direct influence of O<sub>3-NLOC</sub> and the importance of boundary layer diurnal variations in the formation of such distinct diurnal ozone variations at Mt. Huang.</p>


Author(s):  
Zohir Chowdhury ◽  
Mei Zheng ◽  
James J. Schauer ◽  
Rebecca J. Sheesley ◽  
Lynn G. Salmon ◽  
...  

2016 ◽  
Vol 16 (9) ◽  
pp. 5513-5529 ◽  
Author(s):  
Vidmantas Ulevicius ◽  
Steigvilė Byčenkienė ◽  
Carlo Bozzetti ◽  
Athanasia Vlachou ◽  
Kristina Plauškaitė ◽  
...  

Abstract. In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m−3 and black carbon (BC) up to 17 µg m−3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26–44 % and 13–23 % to the total carbon (TC), respectively. 5–8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4–13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.


2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


2014 ◽  
Vol 119 (6) ◽  
pp. 3476-3485 ◽  
Author(s):  
Elena N. Kirillova ◽  
August Andersson ◽  
Suresh Tiwari ◽  
Atul Kumar Srivastava ◽  
Deewan Singh Bisht ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 100075 ◽  
Author(s):  
Boris Fuchs ◽  
Kristin Marie Sørheim ◽  
Matteo Chincarini ◽  
Emma Brunberg ◽  
Solveig Marie Stubsjøen ◽  
...  

2019 ◽  
Author(s):  
Marco Paglione ◽  
Stefania Gilardoni ◽  
Matteo Rinaldi ◽  
Stefano Decesari ◽  
Nicola Zanca ◽  
...  

Abstract. The Po Valley (Italy) is a well-known air quality hotspot characterized by Particulate Matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of the Emilia-Romagna regional project SUPERSITO, the southern Po Valley submicron aerosol chemical composition was characterized by means of High-Resolution Aerosol Mass Spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over four years (from 2011 to 2014) at two different sites (Bologna, BO, urban background and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for an average 45 ± 8 % (ranging 33–58 %) and 46 ± 7 % (ranging 36–50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and at the rural site, respectively. Primary organic aerosol (POA) comprises biomass burning (23 ± 13 % of OA) and fossil fuel (12 ± 7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban/rural concentrations ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 to 38 % of the total OA mass. Secondary organic aerosol (SOA) contribute to OA mass to a much larger extent than POA at both sites throughout the year (69 ± 16 % and 83 ± 16 % at urban and rural, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning ageing products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14–44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. Among the environmental factors controlling the formation of SOA in the Po Valley, the availability of liquid water in the aerosol was shown to play a key role in the cold season. We estimate that organic fraction originating from aqueous reactions of biomass burning products (bb-aqSOA) represents 21 % (14–28 %) and 25 % (14–35 %) of the total OA mass and 44 % (32–56 %) and 61 % (21–100 %) of the SOA mass at the urban and rural sites, respectively.


Sign in / Sign up

Export Citation Format

Share Document