Diurnal variations and source apportionment of ozone at the summit of Mount Huang, a rural site in Eastern China

Author(s):  
Jinhui Gao

<p>Comprehensive measurements were conducted at the summit of Mount (Mt.) Huang, a rural site located in eastern China during the summer of 2011. They observed that ozone showed pronounced diurnal variations with high concentrations at night and low values during daytime. The Weather Research and Forecasting with Chemistry (WRF-Chem) model was applied to simulate the ozone concentrations at Mt. Huang in June 2011. With processes analysis and online ozone tagging method we coupled into the model system, the causes of this diurnal pattern and the contributions from different source regions were investigated. Our results showed that boundary layer diurnal cycle played an important role in driving the ozone diurnal variation. Further analysis showed that the negative contribution of vertical mixing was significant, resulting in the ozone decrease during the daytime. In contrast, ozone increased at night owing to the significant positive contribution of advection. This shifting of major factor between vertical mixing and advection formed this diurnal variation. Ozone source apportionment results indicated that approximately half was provided by inflow effect of ozone from outside the model domain (O<sub>3-INFLOW</sub>) and the other half was formed by ozone precursors (O<sub>3-PBL</sub>) emitted in eastern, central, and southern China. In the O<sub>3-PBL</sub>, 3.0% of the ozone was from Mt. Huang reflecting the small local contribution (O<sub>3-LOC</sub>) and the non-local contributions (O<sub>3-NLOC</sub>) accounted for 41.6%, in which ozone from the southerly regions contributed significantly, for example, 9.9% of the ozone originating from Jiangxi, representing the highest geographical contributor. Because the origin and variation of O<sub>3-NLOC</sub> was highly related to the diurnal movements in boundary layer, the similar diurnal patterns between O<sub>3-NLOC</sub> and total ozone both indicated the direct influence of O<sub>3-NLOC</sub> and the importance of boundary layer diurnal variations in the formation of such distinct diurnal ozone variations at Mt. Huang.</p>

2014 ◽  
Vol 27 (15) ◽  
pp. 5747-5767 ◽  
Author(s):  
Yu Du ◽  
Qinghong Zhang ◽  
Yi-leng Chen ◽  
Yangyang Zhao ◽  
Xu Wang

Abstract The detailed spatial distributions and diurnal variations of low-level jets (LLJs) during early summer (May–July) in China are documented using 2006–11 hourly model data from the Weather Research and Forecasting (WRF) Model with a 9-km horizontal resolution. It was found that LLJs frequently occur in the following regions of China: the Tarim basin, northeastern China, the Tibetan Plateau (TP), and southern China. The LLJs over China are classified into two types: boundary layer jets (BLJs, below 1 km) and synoptic-system-related LLJs (SLLJs, within 1–4 km). The LLJs in the Tarim basin and the TP are mainly BLJs. The SLLJs over southern China and northeastern China are associated with the mei-yu front and northeast cold vortex (NECV), respectively. The BLJs in all regions show pronounced diurnal variations with maximum occurrences at nighttime or in the early morning, whereas diurnal variations of SLLJs vary, depending on the location. From the analysis of model data, the diurnal variation of BLJs is mainly caused by inertial oscillation at nighttime and vertical mixing in the boundary layer during daytime. Over northeastern China, SLLJ occurrences show little diurnal variation. Over southern China, two diurnal modes of SLLJs, propagation and stationary, exist and have seasonal variations, which is generally consistent with diurnal variations of precipitation.


2017 ◽  
Vol 222 ◽  
pp. 513-522 ◽  
Author(s):  
J. Gao ◽  
B. Zhu ◽  
H. Xiao ◽  
H. Kang ◽  
X. Hou ◽  
...  

2014 ◽  
Vol 27 (23) ◽  
pp. 8827-8835 ◽  
Author(s):  
Xiquan Dong ◽  
Baike Xi ◽  
Peng Wu

Abstract A new method has been developed to retrieve the nighttime marine boundary layer (MBL) cloud microphysical properties, which provides a complete 19-month dataset to investigate the diurnal variation of MBL cloud microphysical properties at the Azores. Compared to the corresponding daytime results presented in the authors' previous study over the Azores region, all nighttime monthly means of cloud liquid water path (LWP) exceed their daytime counterparts with an annual-mean LWP of 140 g m−2, which is ~30.9 g m−2 larger than daytime. Because the MBL clouds are primarily driven by convective instabilities caused by cloud-top longwave (LW) radiative cooling, more MBL clouds are well mixed and coupled with the surface during the night; thus, its cloud layer is deeper and its LWP is higher. During the day, the cloud layer is warmed by the absorption of solar radiation and partially offsets the cloud-top LW cooling, which makes the cloud layer thinner with less LWP. The seasonal and diurnal variations of cloud LWC and optical depth basically follow the variation of LWP. There are, however, no significant day–night differences and diurnal variations in cloud-droplet effective radius (re), number concentration (Nd), and corresponding surface measured cloud condensation nuclei (CCN) number concentration (NCCN) (at supersaturation S = 0.2%). Surface NCCN increases from around sunrise (0300–0600 LT) to late afternoon, which strongly correlates with surface wind speed (r = 0.76) from 0300 to 1900 LT. The trend in hourly-mean Nd is consistent with NCCN variation from 0000 to 0900 LT but not for afternoon and evening with an averaged ratio (Nd/NCCN) of 0.35 during the entire study period.


2018 ◽  
Author(s):  
Yunhua Chang ◽  
Yanlin Zhang ◽  
Chongguo Tian ◽  
Shichun Zhang ◽  
Xiaoyan Ma ◽  
...  

Abstract. Atmospheric fine-particle (PM2.5) pollution is frequently associated with the formation of particulate nitrate (pNO3−), the end product of the oxidation of NOx gases (= NO + NO2) in the upper troposphere. The application of stable nitrogen (N) (and oxygen) isotope analyses of pNO3− to constrain NOx source partitioning in the atmosphere requires the knowledge of the isotope fractionation during the reactions leading to NO3− formation. Here we determined the δ15N values of fresh pNO3− (δ15N-pNO3−) in PM2.5 at a rural site in Northern China, where atmospheric pNO3− can be attributed exclusively to biomass burning. The observed δ15N-pNO3− (12.17 ± 1.55 ‰; n = 8) was much higher than the N isotopic source signature of NOx from biomass burning (1.04 ± 4.13 ‰). The large difference between δ15N-pNO3− and δ15N-NOx (Δ(δ15N)) can be reconciled by the net N isotope effect (ԑN) associated with the gas-particle conversion from NOx to NO3−. For the biomass-burning site, a mean ԑN (≈ Δ(δ15N)) of 10.99 ± 0.74 ‰ was assessed through a newly-developed computational quantum chemistry (CQC) module. ԑN depends on the relative importance of the two dominant N isotope exchange reactions involved (NO2 reaction with OH versus hydrolysis of dinitrogen pentoxide (N2O5) with H2O), and varies between regions, and on a diurnal basis. A second, slightly higher CQC-based mean value for ԑN (15.33 ± 4.90 ‰) was estimated for an urban site with intense traffic in Eastern China, and integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates for NOx at this site. Based on the δ15N values (10.93 ± 3.32 ‰, n = 43) of ambient pNO3− determined for the urban site, and considering the location-specific estimate for ԑN, our results reveal that the relative contribution of coal combustion and road traffic to urban NOx are 32 ± 11 % and 68 ± 11 %, respectively. This finding agrees well with a regional bottom-up emission inventory of NOx. Moreover, the variation pattern of OH contribution to ambient pNO3− formation calculated by the CQC module is consistent with that simulated by the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), further confirming the robustness of our estimates. Our investigations also show that, without the consideration of the N isotope effect during pNO3− formation, the observed δ15N-pNO3− at the study site would erroneously imply that NOx is derived almost entirely from coal combustion. Similarly, reanalysis of reported δ15N-NO3− data throughout China suggests that, nationwide, NOx emissions from coal combustion may be substantively overestimated (by > 30 %) when the N isotope fractionation during atmospheric pNO3− formation is neglected.


2019 ◽  
Vol 19 (9) ◽  
pp. 6551-6560 ◽  
Author(s):  
Lu Shen ◽  
Daniel J. Jacob ◽  
Xiong Liu ◽  
Guanyu Huang ◽  
Ke Li ◽  
...  

Abstract. Nadir-viewing satellite observations of tropospheric ozone in the UV have been shown to have some sensitivity to boundary layer ozone pollution episodes, but so far they have not yet been compared to surface ozone observations collected by large-scale monitoring networks. Here we use 2013–2017 surface ozone data from China's new Ministry of Ecology and Environment (MEE) network of ∼ 1000 sites, together with vertical profiles from ozonesondes and aircraft, to quantify the ability of tropospheric ozone retrievals from the Ozone Monitoring Instrument (OMI) and to detect boundary layer ozone pollution in China. We focus on summer when ozone pollution in China is most severe and when OMI has the strongest sensitivity. After subtracting the Pacific background, we find that the 2013–2017 mean OMI ozone enhancements over eastern China have strong spatial correlation with the corresponding multiyear means in the surface afternoon observations (R=0.73), and that OMI can estimate these multiyear means in summer afternoon surface ozone with a precision of 8 ppb. The OMI data show significantly higher values on observed surface ozone episode days (>82 ppb) than on non-episode days. Day-to-day correlations with surface ozone are much weaker due to OMI noise and are stronger for sites in southern China (<34∘ N; R=0.3–0.6) than in northern China (R=0.1–0.3) because of weaker retrieval sensitivity and larger upper tropospheric variability in the north. Ozonesonde data show that much of the variability of OMI ozone over southern China in summer is driven by the boundary layer. Comparison of 2005–2009 and 2013–2017 OMI data indicates that mean summer afternoon surface ozone in southern China (including urban and rural regions) has increased by 3.5±3.0 ppb over the 8-year period and that the number of episode days per summer has increased by 2.2±0.4 (as diagnosed by an extreme value model), generally consistent with the few long-term surface records. Ozone increases have been particularly large in the Yangtze River Delta and in the Hubei, Guangxi and Hainan provinces.


2018 ◽  
Vol 18 (16) ◽  
pp. 11647-11661 ◽  
Author(s):  
Yunhua Chang ◽  
Yanlin Zhang ◽  
Chongguo Tian ◽  
Shichun Zhang ◽  
Xiaoyan Ma ◽  
...  

Abstract. Atmospheric fine-particle (PM2.5) pollution is frequently associated with the formation of particulate nitrate (pNO3−), the end product of the oxidation of NOx gases (NO + NO2) in the upper troposphere. The application of stable nitrogen (N) (and oxygen) isotope analyses of pNO3− to constrain NOx source partitioning in the atmosphere requires knowledge of the isotope fractionation during the reactions leading to nitrate formation. Here we determined the δ15N values of fresh pNO3− (δ15N–pNO3−) in PM2.5 at a rural site in northern China, where atmospheric pNO3− can be attributed exclusively to biomass burning. The observed δ15N–pNO3− (12.17±1.55 ‰; n = 8) was much higher than the N isotopic source signature of NOx from biomass burning (1.04±4.13 ‰). The large difference between δ15N–pNO3− and δ15N–NOx (Δ(δ15N)) can be reconciled by the net N isotope effect (εN) associated with the gas–particle conversion from NOx to NO3−. For the biomass burning site, a mean εN( ≈ Δ(δ15N)) of 10.99±0.74 ‰ was assessed through a newly developed computational quantum chemistry (CQC) module. εN depends on the relative importance of the two dominant N isotope exchange reactions involved (NO2 reaction with OH versus hydrolysis of dinitrogen pentoxide (N2O5) with H2O) and varies between regions and on a diurnal basis. A second, slightly higher CQC-based mean value for εN (15.33±4.90 ‰) was estimated for an urban site with intense traffic in eastern China and integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates for NOx at this site. Based on the δ15N values (10.93±3.32 ‰; n = 43) of ambient pNO3− determined for the urban site, and considering the location-specific estimate for εN, our results reveal that the relative contribution of coal combustion and road traffic to urban NOx is 32 % ± 11 % and 68 %± 11 %, respectively. This finding agrees well with a regional bottom-up emission inventory of NOx. Moreover, the variation pattern of OH contribution to ambient pNO3− formation calculated by the CQC module is consistent with that simulated by the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), further confirming the robustness of our estimates. Our investigations also show that, without the consideration of the N isotope effect during pNO3− formation, the observed δ15N–pNO3− at the study site would erroneously imply that NOx is derived almost entirely from coal combustion. Similarly, reanalysis of reported δ15N–NO3− data throughout China and its neighboring areas suggests that NOx emissions from coal combustion may be substantively overestimated (by  > 30 %) when the N isotope fractionation during atmospheric pNO3− formation is neglected.


Author(s):  
Lian Chen ◽  
Shenglu Zhou ◽  
Qiong Yang ◽  
Qingrong Li ◽  
Dongxu Xing ◽  
...  

This study detailed a complete research from Lead (Pb) content level to ecological and health risk to direct- and primary-sources apportionment arising from wheat and rice grains, in the Lihe River Watershed of the Taihu region, East China. Ecological and health risk assessment were based on the pollution index and US Environmental Protection Agency (EPA) health risk assessment model. A three-stage quantitative analysis program based on Pb isotope analysis to determine the relative contributions of primary sources involving (1) direct-source apportionment in grains with a two-end-member model, (2) apportionment of soil and dustfall sources using the IsoSource model, and (3) the integration of results of (1) and (2) was notedly first proposed. The results indicated that mean contents of Pb in wheat and rice grains were 0.54 and 0.45 mg/kg and both the bio-concentration factors (BCF) were <<1; the ecological risk pollution indices were 1.35 for wheat grains and 1.11 for rice grains; hazard quotient (HQ) values for adult and child indicating health risks through ingestion of grains were all <1; Coal-fired industrial sources account for up to 60% of Pb in the grains. This study provides insights into the management of grain Pb pollution and a new method for its source apportionment.


Sign in / Sign up

Export Citation Format

Share Document