Association between short-term air pollution exposure and attention-deficit/hyperactivity disorder-related hospital admissions among adolescents: A nationwide time-series study

2020 ◽  
Vol 266 ◽  
pp. 115369
Author(s):  
Jiyoon Park ◽  
Ji Hoon Sohn ◽  
Sung Joon Cho ◽  
Hwa Yeon Seo ◽  
Il-Ung Hwang ◽  
...  
2021 ◽  
Author(s):  
Yaqi Liu ◽  
Yi Jiang ◽  
Manyi Wu ◽  
Sunghar Muheyat ◽  
Dongai Yao ◽  
...  

Abstract Background There are few studies focused on the correlations between ambient air pollution and abdominal pain, especially in emergency departments in China. Method: Daily data (from January 1, 2016 to December 31, 2018), including air pollution concentration (SO2, NO2, PM2.5, PM10, CO, and O3) and meteorological variables, for daily emergency room visits (ERVs) were collected in Wuhan, China. We conducted a time-series study to investigate the potential correlation between six ambient air pollutants and ERVs for abdominal pain and their effects, in different genders, ages and seasons. Results A total of 16,306 abdominal pain ERVs were identified during the study period. A 10-µg/m3 increase in concentration of SO2, NO2, PM2.5, PM10, CO, and O3 corresponded respectively to incremental increases in abdominal pain of 6.12% (95% confidence interval [CI]: -0.44-13.12), 1.65% (95%CI: -0.25-3.59), 1.12% (95%CI: -0.18-2.44), 0.38% (95%CI: -1.09-1.87), 9.87% (95%CI:3.14–17.05) and 1.11% (95%CI: 0.03–2.21). We observed significant correlations between CO and O3 and daily abdominal pain ERVs increase, and positive but insignificant correlations between the other pollutants and ERVs. The effects were stronger mainly for females (especially SO2 and O3) and younger people (especially CO and O3). The correlations of PM2.5 and PM10 were stronger in cool seasons, while the correlation of CO was stronger in warm seasons. Conclusion Our time-series study suggested that short-term exposure to air pollution (especially CO and O3) was positively correlated with ERVs for abdominal pain in Wuhan, China, and that their effects varied by season, gender and age. These data can add evidence on how air pollutants affect the human body, and may prompt hospitals to take specific precautions on polluted days and maintain order in emergency departments made busier due to the pollution.


Toxin Reviews ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 167-179
Author(s):  
Azizallah Dehghan ◽  
Narges Khanjani ◽  
Abbas Bahrampour ◽  
Gholamreza Goudarzi ◽  
Masoud Yunesian

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Daniel S. Sacramento ◽  
Lourdes C. Martins ◽  
Marcos A. Arbex ◽  
Ysabely de A. P. Pamplona

Introduction. Air pollution has been identified as a serious public health problem in the world’s major metropolises. Recent studies have shown that airborne particle concentrations are associated with a wide range of effects on human health, including increased hospital admissions for respiratory disease, enhanced asthma episodes, decreased lung function, and increased mortality. Objective. To relate the levels of air pollution and hospital admissions for cardiovascular and respiratory diseases in the city of Manaus in Brazil from 2008 to 2012. Method. This is an ecological time-series study among children (under 5 years of age) and elderly (above 60 years of age). Data on the daily number of hospitalizations for cardiovascular and respiratory diseases, pollutants (PM2.5), temperature, and humidity were used. Poisson generalized additive models were used to estimate the association between variables. Increases in hospitalizations for cardiovascular and respiratory diseases were estimated for the interquartile range (IQR) daily mean level of each variable studied, with a confidence interval of 95%. Results. Respiratory diseases and children: −0.40% (95% CI: −1.11, 0.30), 0.59% (95% CI: −0.35, 1.52), and 0.47% (95% CI: −3.28, 4.21) for PM2.5, temperature, and humidity, respectively. Respiratory diseases and elderly: 0.19% (95% CI: −0.93, 1.31), −0.10% (95% CI: −1.85, 1.65), and −6.17% (95% CI: −13.08, 0.74) for PM2.5, temperature, and humidity, respectively. Cardiovascular diseases and elderly: −0.18% (95% CI: −0.86, 0.50), −0.04% (95% CI: −1.10, 1.03), and −3.37% (95% CI: −7.59, 0.85) for PM2.5, temperature, and humidity, respectively. Conclusions. The time-series study found no significant association between PM2.5, temperature, humidity, and hospitalization, unlike the evidences provided by the present academic literature. Since there is no air quality monitoring network in Manaus and the option available in the present study was to reproduce some information obtained from remote sensing, there is a need for implementation of ground monitoring stations for health and environmental studies in the region.


Sign in / Sign up

Export Citation Format

Share Document