4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos

2021 ◽  
Vol 274 ◽  
pp. 116560
Author(s):  
Yang Xu ◽  
Ji Hyun Jang ◽  
Myung Chan Gye
PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0185729 ◽  
Author(s):  
Allyson E. Kennedy ◽  
Suraj Kandalam ◽  
Rene Olivares-Navarrete ◽  
Amanda J. G. Dickinson

2019 ◽  
Vol 10 ◽  
Author(s):  
Alexandra Mills ◽  
Elizabeth Bearce ◽  
Rachael Cella ◽  
Seung Woo Kim ◽  
Megan Selig ◽  
...  

Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 363-376 ◽  
Author(s):  
A. Collazo ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

Although the Xenopus embryo has served as an important model system for both molecular and cellular studies of vertebrate development, comparatively little is known about its neural crest. Here, we take advantage of the ease of manipulation and relative transparency of Xenopus laevis embryos to follow neural crest cell migration and differentiation in living embryos. We use two techniques to study the lineage and migratory patterns of frog neural crest cells: (1) injections of DiI or lysinated rhodamine dextran (LRD) into small populations of neural crest cells to follow movement and (2) injections of LRD into single cells to follow cell lineage. By using non-invasive approaches that allow observations in living embryos and control of the time and position of labelling, we have been able to expand upon the results of previous grafting experiments. Migration and differentiation of the labelled cells were observed over time in individual living embryos, and later in sections to determine precise position and morphology. Derivatives populated by the neural crest are the fins, pigment stripes, spinal ganglia, adrenal medulla, pronephric duct, enteric nuclei and the posterior portion of the dorsal aorta. In the rostral to mid-trunk levels, most neural crest cells migrate along two paths: a dorsal pathway into the fin, followed by presumptive fin cells, and a ventral pathway along the neural tube and notochord, followed by presumptive pigment, sensory ganglion, sympathetic ganglion and adrenal medullary cells. In the caudal trunk, two additional paths were noted. One group of cells moves circumferentially within the fin, in an arc from dorsal to ventral; another progresses ventrally to the anus and subsequently populates the ventral fin. By labelling individual precursor cells, we find that neural tube and neural crest cells often share a common precursor. The majority of clones contain labelled progeny cells in the dorsal fin. The remainder have progeny in multiple derivatives including spinal ganglion cells, pigment cells, enteric cells, fin cells and/or neural tube cells in all combinations, suggesting that many premigratory Xenopus neural crest precursors are multipotent.


2019 ◽  
Vol 63 (1-2) ◽  
pp. 29-35
Author(s):  
Natsumi Yokote ◽  
Marianna Y. Suzuki-Kosaka ◽  
Tatsuo Michiue ◽  
Takahiko Hara ◽  
Kosuke Tanegashima

Latrophilin2 (Lphn2) is an adhesion-class of G protein-coupled receptor with an unknown function in development. Here, we show that Xenopus laevis lphn2 (Xlphn2) is involved in the migration and differentiation of neural crest (NC) cells and placode patterning in Xenopus laevis embryos. Although Xlphn2 mRNA was detected throughout embryogenesis, it was expressed more abundantly in the placode region. Morpholino antisense oligonucleotide-mediated knockdown of Xlphn2 caused abnormal migration of NC cells, irregular epibranchial placode segmentation, and defective cartilage formation. Transplantation of fluorescently-labeled NC regions of wild-type embryos into Xlphn2 morpholino-injected embryos reproduced the defective NC cell migration, indicating that Xlphn2 regulates the migration of NC cells in a non-cell autonomous manner. Our results suggest that Xlphn2 is essential for placode patterning and as a guidance molecule for NC cells.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 237-250 ◽  
Author(s):  
E.J. Mackie ◽  
R.P. Tucker ◽  
W. Halfter ◽  
R. Chiquet-Ehrismann ◽  
H.H. Epperlein

The distribution of the extracellular matrix (ECM) glycoprotein, tenascin, has been compared with that of fibronectin in neural crest migration pathways of Xenopus laevis, quail and rat embryos. In all species studied, the distribution of tenascin, examined by immunohistochemistry, was more closely correlated with pathways of migration than that of fibronectin, which is known to be important for neural crest migration. In Xenopus laevis embryos, anti-tenascin stained the dorsal fin matrix and ECM along the ventral route of migration, but not the ECM found laterally between the ectoderma and somites where neural crest cells do not migrate. In quail embryos, the appearance of tenascin in neural crest pathways was well correlated with the anterior-to-posterior wave of migration. The distribution of tenascin within somites was compared with that of the neural crest marker, HNK-1, in quail embryos. In the dorsal halves of quail somites which contained migrating neural crest cells, the predominant tenascin staining was in the anterior halves of the somites, codistributed with the migrating cells. In rat embryos, tenascin was detectable in the somites only in the anterior halves. Tenascin was not detectable in the matrix of cultured quail neural crest cells, but was in the matrix surrounding somite and notochord cells in vitro. Neural crest cells cultured on a substratum of tenascin did not spread and were rounded. We propose that tenascin is an important factor controlling neural crest morphogenesis, perhaps by modifying the interaction of neural crest cells with fibronectin.


2011 ◽  
Vol 356 (1) ◽  
pp. 162
Author(s):  
Simone Macri' ◽  
Marco Onorati ◽  
Riccardo Sgarra ◽  
Gloria Ros ◽  
Guidalberto Manfioletti ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Alexandra Mills ◽  
Elizabeth Bearce ◽  
Rachael Cella ◽  
Seung Woo Kim ◽  
Megan Selig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document