scholarly journals The distribution of tenascin coincides with pathways of neural crest cell migration

Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 237-250 ◽  
Author(s):  
E.J. Mackie ◽  
R.P. Tucker ◽  
W. Halfter ◽  
R. Chiquet-Ehrismann ◽  
H.H. Epperlein

The distribution of the extracellular matrix (ECM) glycoprotein, tenascin, has been compared with that of fibronectin in neural crest migration pathways of Xenopus laevis, quail and rat embryos. In all species studied, the distribution of tenascin, examined by immunohistochemistry, was more closely correlated with pathways of migration than that of fibronectin, which is known to be important for neural crest migration. In Xenopus laevis embryos, anti-tenascin stained the dorsal fin matrix and ECM along the ventral route of migration, but not the ECM found laterally between the ectoderma and somites where neural crest cells do not migrate. In quail embryos, the appearance of tenascin in neural crest pathways was well correlated with the anterior-to-posterior wave of migration. The distribution of tenascin within somites was compared with that of the neural crest marker, HNK-1, in quail embryos. In the dorsal halves of quail somites which contained migrating neural crest cells, the predominant tenascin staining was in the anterior halves of the somites, codistributed with the migrating cells. In rat embryos, tenascin was detectable in the somites only in the anterior halves. Tenascin was not detectable in the matrix of cultured quail neural crest cells, but was in the matrix surrounding somite and notochord cells in vitro. Neural crest cells cultured on a substratum of tenascin did not spread and were rounded. We propose that tenascin is an important factor controlling neural crest morphogenesis, perhaps by modifying the interaction of neural crest cells with fibronectin.

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


1986 ◽  
Vol 102 (2) ◽  
pp. 432-441 ◽  
Author(s):  
R B Runyan ◽  
G D Maxwell ◽  
B D Shur

Migrating embryonic cells have high levels of cell surface galactosyltransferase (GalTase) activity. It has been proposed that GalTase participates during migration by recognizing and binding to terminal N-acetylglucosamine (GlcNAc) residues on glycoconjugates within the extracellular matrix (Shur, B. D., 1982, Dev. Biol. 91:149-162). We tested this hypothesis using migrating neural crest cells as an in vitro model system. Cell surface GalTase activity was perturbed using three independent sets of reagents, and the effects on cell migration were analyzed by time-lapse microphotography. The GalTase modifier protein, alpha-lactalbumin (alpha-LA), was used to inhibit surface GalTase binding to terminal GlcNAc residues in the underlying substrate. alpha-LA inhibited neural crest cell migration on basal lamina-like matrices in a dose-dependent manner, while under identical conditions, alpha-LA had no effect on cell migration on fibronectin. Control proteins, such as lysozyme (structurally homologous to alpha-LA) and bovine serum albumin, did not effect migration on either matrix. Second, the addition of competitive GalTase substrates significantly inhibited neural crest cell migration on basal lamina-like matrices, but as above, had no effect on migration on fibronectin. Comparable concentrations of inappropriate sugars also had no effect on cell migration. Third, addition of the GalTase catalytic substrate, UDPgalactose, produced a dose-dependent increase in the rate of cell migration. Under identical conditions, the inappropriate sugar nucleotide, UDPglucose, had no effect. Quantitative enzyme assays confirmed the presence of GalTase substrates in basal lamina matrices, their absence in fibronectin matrices, and the ability of alpha-LA to inhibit GalTase activity towards basal lamina substrates. Laminin was found to be a principle GalTase substrate in the basal lamina, and when tested in vitro, alpha-LA inhibited cell migration on laminin. Together, these experiments show that neural crest cells have at least two distinct mechanisms for interacting with the substrate during migration, one that is fibronectin-dependent and one that uses GalTase recognition of basal lamina glycoconjugates.


Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Paul A. Trainor ◽  
Dorothy Sobieszczuk ◽  
David Wilkinson ◽  
Robb Krumlauf

Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in pattering the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2303-2312 ◽  
Author(s):  
R.M. Landolt ◽  
L. Vaughan ◽  
K.H. Winterhalter ◽  
D.R. Zimmermann

Chondroitin sulfate proteoglycans have been implicated in the regulation of cell migration and pattern formation in the developing peripheral nervous system. To identify whether the large aggregating proteoglycan versican might be mediating these processes, we prepared monospecific antibodies against a recombinant core protein fragment of chick versican. The purified antibodies recognize the predominant versican splice-variants V0 and V1. Using these antibodies, we revealed a close correlation between the spacio-temporal expression of versican and the formation of molecular boundaries flanking or transiently blocking the migration pathways of neural crest cells or motor and sensory axons. Versican is present in the caudal sclerotome, the early dorsolateral tissue underneath the ectoderm, the pelvic girdle precursor and to a certain extent in the perinotochordal mesenchyme. Versican is completely absent from tissues invaded by neural crest cells and extending axons. Upon completion of neural crest cell migration and axon outgrowth, versican expression is shifted to pre-chondrogenic areas. Since versican inhibits cellular interactions with fibronectin, laminin and collagen I in vitro, the selective expression of versican within barrier tissues may be linked to a functional role of versican in the guidance of migratory neural crest cells and outgrowing axons.


Development ◽  
1986 ◽  
Vol 98 (1) ◽  
pp. 85-97
Author(s):  
Georgia Guillory ◽  
Marianne Bronner-Fraser

Neural crest cells in the trunk of the avian embryo come into contact with the somites and neural tube during the course of their migration. However, the relationship between the somites and the early migratory routes followed by these cells is not yet completely understood. Here, we use a tissue culture assay to examine if avian neural crest cells migrate through the somites. Cultures of quail somites were prepared from four adjacent regions along the neural axis in the trunk. Each region had four pairs of consecutive somites with region I being most anterior and region IV containing the last four segments. Within each region, the somites were separated from other tissues by enzymatic digestion and plated onto collagen-coated dishes. Immuno-cytochemical techniques were used to confirm that no neural crest cells, recognized by the HNK-1 antibody, were present on the surface of the somites at the time of explantation. After several days in culture, the explanted somites were screened to identify pigment cells. Because neural crest cells give rise to all of the melanocytes in the trunk, the presence of pigment cells indicated that neural crest precursors were contained within the initial explant. After 5–11 days in vitro, the percentage of somite cultures containing pigment cells in regions I through IV, respectively, was 36%, 51%, 31% and 1%. These results suggest that neural crest cells migrate through the somitic mesenchyme and first enter the somites between 5 to 9 segments rostral to the most recently formed somite.


Development ◽  
1991 ◽  
Vol 113 (Supplement_2) ◽  
pp. 9-15 ◽  
Author(s):  
Andrew Lumsden ◽  
Sarah Guthrie

The developing chick hindbrain is transiently divided into a series of repeating units or rhombomeres. Recent work has shown that an alternating periodicity exists both in the cell surface properties of rhombomeres and in the segmental origin of hindbrain neural crest cells. Experiments in which rhombomeres from different axial levels were confronted in the absence of an interrhombomere boundary showed that odd-numbered segments 3 and 5 combined without generating a boundary, as did even-numbered segments 2, 4 and 6. When rhombomeres originating from adjacent positions, or three rhombomeres distant from one another were combined, a new boundary was regenerated. Mapping of the migration pathways of neural crest cells showed that odd-numbered and even-numbered rhombomeres share properties with respect to the production of neural crest cells. In the hindbrain region the neural crest is segregated into streams. Neural crest cells migrating from rhombomeres 1 and 2, rhombomere 4 and rhombomere 6 respectively populate distinct cranial nerve ganglia and branchial arches. In contrast, rhombomeres 3 and 5 are free of neural crest cells.


1994 ◽  
Vol 72 (7) ◽  
pp. 1340-1353 ◽  
Author(s):  
Bahram Sadaghiani ◽  
Bruce J. Crawford ◽  
Juergen R. Vielkind

The changes in distribution of chondroitin sulfate proteoglycans (CSs) and fibronectin (FN), two major components of the extracellular matrix (ECM), are described during the development and migration of neural crest cells in two Xiphophorus species offish, X. helleri (swordtail) and X. maculatus (platyfish), using immunohistochemistry. A detailed description of the developmental changes in HNK-1-positive ECM components is also provided and compared with those of CSs and FN. HNK-1 antigen was also used as a marker for the neural crest cells. Weak staining for CSs, FN, and HNK-1-positive ECM was present in the neural crest cell migration pathways prior to migration of the cells. The level of staining increased dramatically during migration of these cells and decreased again after migration was nearly completed. Staining for CSs was more widespread than staining for FN, while the HNK-1 staining pattern was more clearly restricted to the migratory pathways than those seen with the other two antibodies. The correlation between the spatiotemporal relationship of these ECM components and the segregation and migration of neural crest cells suggests that these ECM molecules may be involved in both initiating and guiding the migration of neural crest cells in these fish. The HNK-1-positive ECM may play a more critical role than CSs and FN.


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 691-703 ◽  
Author(s):  
J. Sechrist ◽  
G.N. Serbedzija ◽  
T. Scherson ◽  
S.E. Fraser ◽  
M. Bronner-Fraser

The proposed pathways of chick cranial neural crest migration and their relationship to the rhombomeres of the hindbrain have been somewhat controversial, with differing results emerging from grafting and DiI-labelling analyses. To resolve this discrepancy, we have examined cranial neural crest migratory pathways using the combination of neurofilament immunocytochemistry, which recognizes early hindbrain neural crest cells, and labelling with the vital dye, DiI. Neurofilament-positive cells with the appearance of premigratory and early-migrating neural crest cells were noted at all axial levels of the hindbrain. At slightly later stages, neural crest cell migration in this region appeared segmented, with no neural crest cells obvious in the mesenchyme lateral to rhombomere 3 (r3) and between the neural tube and the otic vesicle lateral to r5. Focal injections of DiI at the levels of r3 and r5 demonstrated that both of these rhombomeres generated neural crest cells. The segmental distribution of neural crest cells resulted from the DiI-labelled cells that originated in r3 and r5 deviating rostrally or caudally and failing to enter the adjacent preotic mesoderm or otic vesicle region. The observation that neural crest cells originating from r3 and r5 avoided specific neighboring domains raises the intriguing possibility that, as in the trunk, extrinsic factors play a major role in the axial patterning of the cranial neural crest and the neural crest-derived peripheral nervous system.


Sign in / Sign up

Export Citation Format

Share Document