Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season

2021 ◽  
Vol 281 ◽  
pp. 117026
Author(s):  
Qianqian Zhang ◽  
Zhen Wu ◽  
Xi Zhang ◽  
Pengpeng Duan ◽  
Haojie Shen ◽  
...  
2016 ◽  
Vol 49 (2) ◽  
pp. 218-225 ◽  
Author(s):  
Yongseon Zhang ◽  
Kangho Jung ◽  
Hye-Rae Cho ◽  
Kyeong-Hwa Han ◽  
Min-Kyeong Kim ◽  
...  

2014 ◽  
Vol 15 (1) ◽  
pp. 153-162 ◽  
Author(s):  
Da Dong ◽  
Qibo Feng ◽  
Kim McGrouther ◽  
Min Yang ◽  
Hailong Wang ◽  
...  

2009 ◽  
Vol 15 (1) ◽  
pp. 229-242 ◽  
Author(s):  
JIANWEN ZOU ◽  
YAO HUANG ◽  
YANMEI QIN ◽  
SHUWEI LIU ◽  
QIRONG SHEN ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiang Liu ◽  
Quan Wang ◽  
Zhiming Qi ◽  
Jiangang Han ◽  
Lanhai Li

2020 ◽  
Vol 27 (3) ◽  
pp. 197
Author(s):  
Yuli Siti Fatma ◽  
Iman Rusmana ◽  
Aris Tri Wahyudi ◽  
Hamim Hamim

Paddy field is one of the anthropogenic sources that produce greenhouse gases emission. This study aimed to investigate the impact of methanotrophic and N2O-reducing bacterial inoculation on CH4 and N2O emissions, paddy growth and bacterial community structure in paddy field. Two treatments of 100% synthetic fertilizer (250 kg urea/ha) without biofertilizer and 50% synthetic fertilizer (125 kg urea/ha) with biofertilizer consisted of methanotrophic and N2O-reducing bacteria were applied in the paddy field. Inoculation of methanotrophic and N2O-reducing bacteria was able to reduce CH4 and N2O emission up to 4.19 mg CH4/m2/day and 351.29 µg N2O/m2/day, respectively. Those bacterial applications were also able to increase paddy growth and yield productivity. According to DGGE profile, inoculation of the biofertilizer seemed to have a transient impact on bacterial communities in paddy soil at 36 days after transplanting (DAT) which showed the lowest similarity with all samples (a similarity index of 0.68). DGGE bands successfully excised have closest relative to uncultured bacteria which comprised 5 phyla, i.e. Proteobacteria (Alphaproteobacteria and Deltaproteobacteria), Nitrospirae, Actinobacteria, Firmicutes, and Acidobacteria. In this study, Alphaproteobacteria was the most dominant phylum. We provide  basic information for developing the biofertilizer which supports sustainable agriculture.


2020 ◽  
Author(s):  
Weifeng Gao ◽  
Dawen Gao ◽  
Liquan Song ◽  
Houcai Sheng ◽  
Tijiu Cai ◽  
...  

Abstract. Permafrost regions store large amounts of soil organic carbon and nitrogen, which are major sources of greenhouse gas. With climate warming, permafrost regions are thawing, releasing an abundance of greenhouse gases to the atmosphere and contributing to climate warming. Numerous studies have shown the mechanism of nitrous oxide (N2O) emissions from the permafrost region during the growing season. However, little is known about the temporal pattern and drivers of nongrowing season N2O emissions from the permafrost region. In this study, N2O emissions from the permafrost region were investigated from June 2016 to June 2018 using the static opaque chamber method. Our aims were to quantify the seasonal dynamics of nongrowing season N2O emissions and its contribution to the annual budget. The results showed that the N2O emissions ranged from −35.75 to 74.16 μg·m−2·h−1 during the nongrowing season in the permafrost region. The mean N2O emission from the growing season were 1.75–2.86 times greater than that of winter and 1.31–1.53 times greater than that of spring thaw period due to the mean soil temperature of the different specified periods. The nongrowing season N2O emissions ranged from 0.89 to 1.44 kg ha−1, which contributed to 41.96–53.73 % of the annual budget, accounting for almost half of the annual emissions in the permafrost region. The driving factors of N2O emissions were different among during the study period, growing season, and nongrowing season. The N2O emissions from total two-year observation period and nongrowing season were mainly affected by soil temperature, while the N2O emissions from growing season were controlled by soil temperature, water table level, and their interactions. In conclusion, nongrowing season N2O emissions is an important component of annual emissions and cannot be ignored in the permafrost region.


2020 ◽  
Vol 17 (2) ◽  
pp. 345-359
Author(s):  
Shimelis Gizachew Raji ◽  
Peter Dörsch

Abstract. Intercropping with legumes is an important component of climate-smart agriculture (CSA) in sub-Saharan Africa, but little is known about its effect on soil greenhouse gas (GHG) exchange. A field experiment was established at Hawassa in the Ethiopian rift valley, comparing nitrous oxide (N2O) and methane (CH4) fluxes in minerally fertilized maize (64 kg N ha−1) with and without Crotalaria (C. juncea) or lablab (L. purpureus) as intercrops over two growing seasons. To study the effect of intercropping time, intercrops were sown either 3 or 6 weeks after maize. The legumes were harvested at flowering, and half of the aboveground biomass was mulched. In the first season, cumulative N2O emissions were largest in 3-week lablab, with all other treatments being equal to or lower than the fertilized maize mono-crop. After reducing mineral N input to intercropped systems by 50 % in the second season, N2O emissions were comparable with the fully fertilized control. Maize-yield-scaled N2O emissions in the first season increased linearly with aboveground legume N yield (p=0.01), but not in the second season when early rains resulted in less legume biomass because of shading by maize. Growing-season N2O-N emission factors varied from 0.02 % to 0.25 % in 2015 and 0.11 % to 0.20 % in 2016 of the estimated total N input. Growing-season CH4 uptake ranged from 1.0 to 1.5 kg CH4-C ha−1, with no significant differences between treatments or years but setting off the N2O-associated emissions by up to 69 %. Our results suggest that leguminous intercrops may increase N2O emissions when developing large biomass in dry years but, when mulched, can replace part of the fertilizer N in normal years, thus supporting CSA goals while intensifying crop production in the region.


Sign in / Sign up

Export Citation Format

Share Document