Biochar amendment with fertilizers increases peanut N uptake, alleviates soil N2O emissions without affecting NH3 volatilization in field experiments

2018 ◽  
Vol 25 (9) ◽  
pp. 8817-8826 ◽  
Author(s):  
Guangcai Tan ◽  
Hongyuan Wang ◽  
Nan Xu ◽  
Hongbin Liu ◽  
Limei Zhai
2016 ◽  
Author(s):  
R. F. Grant ◽  
A. Neftel ◽  
P. Calanca

Abstract. Large variability in N2O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (θ) and temperature (Ts) is greatest. To determine whether temporal variability in θ and Ts of surface litter and near-surface soil could explain that in N2O emissions, a simulation experiment was conducted with ecosys, a comprehensive mathematical model of terrestrial ecosystems in which processes governing N2O emissions were represented at high temporal and spatial resolution. Model performance was verified by comparing N2O emissions, CO2 and energy exchange, and θ and Ts modelled by ecosys with those measured by automated chambers, eddy covariance (EC) and soil sensors at an hourly time-scale during several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, Switzerland. Both modelled and measured events were induced by precipitation following harvesting and subsequent fertilizing or manuring. These events were brief (2 – 5 days) with maximum N2O effluxes that varied from < 1 mg N m-2 h-1 in early spring and autumn to > 3 mg N m-2 h-1 in summer. Only very small emissions were modelled or measured outside these events. In the model, emissions were generated almost entirely in surface litter or near-surface (0 – 2 cm) soil, at rates driven by N availability with fertilization vs. N uptake with grassland regrowth, and by O2 limitation from wetting relative to O2 demand from respiration. In the model, NOx availability relative to O2 limitation governed both the reduction of more oxidized electron acceptors to N2O and the reduction of N2O to N2, so that the magnitude of N2O emissions was not simply related to surface and near-surface θ and Ts. Modelled N2O emissions were found to be sensitive to defoliation intensity and timing (relative to that of fertilization) which controlled plant N uptake and soil θ and Ts prior to and during emission events. In a model sensitivity study, reducing LAI remaining after defoliation to one-half that under current practice and delaying harvesting by 5 days raised N2O emissions by as much as 80% during subsequent events and by an average of 43% annually. The global warming potential from annual N2O emissions in this intensively managed grassland largely offset those from net C uptake in both modelled and field experiments. However model results indicated that this offset could be adversely affected by suboptimal harvest intensity and timing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Saima Kalsoom Babar ◽  
Mohd Khanif Yusop ◽  
Shakeel Ahmed Babar ◽  
Aijaz Ali Khooharo

Nitrogen (N) losses from agricultural fields are commonly observed particularly from urea. The rate of urea hydrolysis is accelerated as it remains in conventional form and about 70% of applied urea losses in different forms to atmosphere. Ammonia volatilization is persuasive loss among all the losses from urea. Therefore to minimize ammonia (NH3) volatilization the micronutrient coated urea is applied to enhance N-efficiency and its uptake. This study is an application of micronutrient coated urea with zinc (Zn) and copper (Cu) for two soil series of Malaysia. A laboratory experiment was designed according to the force draft technique for trapping the NH3 loss. The results have manifested that the rate of ammonia volatilization was 16% from uncoated urea and 8% from coated urea with micronutrients during the first two weeks of observations. After the six weeks of observations it was perceived that the ammonia losses for both soil series were gradually decreased with time. The mean comparison by using Tukey’s range test has shown the positive effect of micronutrient coated urea in comparison with the conventional urea. However the urea coated with the combination of both micronutrients Cu and Zn has shown significant difference in contrast to the coating urea with single micronutrient. The overall results revealed the efficacy of micronutrient coated urea on both of the soil series to maximize N-uptake and reduce NH3 volatilization.


1988 ◽  
Vol 110 (3) ◽  
pp. 475-479 ◽  
Author(s):  
D. Panda ◽  
R. N. Samantaray ◽  
S. Patnaik

SummaryField experiments were conducted in wet seasons (June-December) for 4 years on a clay loam Haplaquept, to study the effects of different N management practices on yield, urea and ammonium-N in flood water and N nutrition of an clite rice cv. CR 1009, grown in rainfed lowlands. During the first 3 years of the experiment, fertilizer management practices like band placement of neem-cake-coated urea (NCU), broadcast application of sulphur-coated urea (SCU) at sowing, or point placement of urea supergranules (USG) 3 weeks after germination at 40 kg N/ha gave grain yields of 3·1–3·4 t·ha, which were almost equal to that of split application of prilled urea (PU). In the 4th year of the experiment, besides NCU and USG, single dose applications of PU as band placement, incorporation in the soil at sowing or broadcast incorporation of soil-treated urea at early tillering was also found to have similar effect on grain yield and N uptake as split application of PU. The flood water of the treatment receiving broadcast application of PU at tillering contained some urea and ammonium N, which rapidly decreased to negligible amounts in 3·4 days.The results suggest that, depending upon the feasibility, any one of the single dose application methods at sowing time or 3 weeks after germination may be adopted in this system of rice culture, which avoids top-dressing of PU to surface flowing flood water of greater depths at later stages of crop growth.


2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


1989 ◽  
Vol 37 (3) ◽  
pp. 269-272
Author(s):  
J.H.G. Slangen ◽  
G.J. Krook ◽  
C.H.M. Hendriks ◽  
N.A.A. Hof

The effect of different amounts (0, 75, 150 and 225 kg/ha) and timings of split application of N on yield and nutrient uptake of 3 hybrid cultivars grown for bulbs was investigated. Efficiency of N-uptake was determined by soil and plant analysis with field experiments in 1983, 1984 and 1985. Leaching of fertilizers applied before planting induced low nutrient efficiencies in sandy soils. Dividing the total N-dressings into 4 monthly applications from Mar. to June or Apr. to July led to a higher N-efficiency, though fertilizers were easily leached with high rainfall. A total of 150 kg N/ha appeared to be adequate. Concentrations of plant nutrients (P, K, Ca, Mg and Na) in mature plants of cultivars Aristo, Connecticut King and Enchantment are presented in relation to bulb yield and N-uptake. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2002 ◽  
Vol 82 (1) ◽  
pp. 53-65 ◽  
Author(s):  
W. J. Bullied ◽  
M. H. Entz ◽  
S. R. Smith, Jr. ◽  
K. C. Bamford

Single-year hay alfalfas (Medicago sativa L.), berseem (Trifolium alexandrinum L.) and red clovers (Trifolium pratense L.), chickling vetch (Lathyrus sativus L.) and lentil (Lens culinaris Medik.) were evaluated for rotational yield and N benefits to the following first-year wheat (Triticum aestivum L.) and second-year barley (Hordeum vulgare L.) crops. Field experiments were initiated in 1997 and 1998 on a Riverdale silty clay soil at Winnipeg, Manitoba. Yield and N content of the following wheat crop were increased following legumes compared to wheat following a canola control. Wheat yield and N content averaged 2955 kg ha–1 and 76.1 kg ha–1, respectively, following the chickling vetch and lentil, 2456 kg ha–1 and 56.4 kg ha–1 following single-year hay legumes, compared with 1706 kg ha–1 and 37.9 kg ha–1 following canola. Non-dormant alfalfas (dormancy rating of eight or greater) contributed to larger grain yields than the dormant alfalfas only in the first year of each experiment. The chickling vetch and lentil provided similar or higher subsequent crop yields and N content for 2 yr compared to a canola control or fallow treatment. This study shows that some increase in yield can be achieved by using a single-year alfalfa hay crop instead of fallow; however, exclusive green manuring of chickling vetch and lentil crops can produce the most increase in yield and N uptake in subsequent crops. Key words: Alfalfa (single-year), legumes (annual), green manure, nitrogen, cropping system


2013 ◽  
Vol 153 (1) ◽  
pp. 42-55 ◽  
Author(s):  
C. A. WHITE ◽  
S. E. ROQUES ◽  
P. M. BERRY

SUMMARYThe aim of the present study was to evaluate the effects on yield, oil concentration and nitrogen (N) uptake efficiency of N fertilizer applied to the foliage of oilseed rape during and soon after flowering. Four field experiments were conducted in the UK during the 2008/09 and 2009/10 seasons which investigated six rates of soil-applied N (ammonium nitrate) ranging from 0 to 280 or 320 kg N/ha with each treatment followed by 0 or 40 kg/ha of foliar N applied as a solution of urea at the end of flowering. Each experiment also investigated five rates of foliar N ranging from 0 to 120 kg N/ha applied at the end of flowering and five timings of foliar N (40 kg N/ha) from mid-flowering to 2 weeks after the end of flowering.Foliar N at 40 kg N/ha applied at the end of flowering significantly increased the seed yield in three of the four experiments. The seed yield increase across all four experiments was 0·25 t/ha (range of 0–0·41 t/ha). In two experiments, the increase in seed yield in response to foliar N occurred irrespective of whether it followed sub-optimal or super-optimal rates of soil-applied N; in one experiment there was a greater response at sub-optimal soil-applied N rates. The foliar N treatment reduced the seed oil concentration by 11 g/kg and increased seed protein concentration by 11 g/kg. Similar yield responses were observed for foliar N applications between mid-flowering and 2 weeks after the end of flowering. The efficiency with which foliar N was taken up into the plant varied between 0 and 100% with an average uptake efficiency across the four experiments of 61%.


2019 ◽  
Vol 11 (15) ◽  
pp. 1837 ◽  
Author(s):  
James Brinkhoff ◽  
Brian W. Dunn ◽  
Andrew J. Robson ◽  
Tina S. Dunn ◽  
Remy L. Dehaan

Mid-season nitrogen (N) application in rice crops can maximize yield and profitability. This requires accurate and efficient methods of determining rice N uptake in order to prescribe optimal N amounts for topdressing. This study aims to determine the accuracy of using remotely sensed multispectral data from satellites to predict N uptake of rice at the panicle initiation (PI) growth stage, with a view to providing optimum variable-rate N topdressing prescriptions without needing physical sampling. Field experiments over 4 years, 4–6 N rates, 4 varieties and 2 sites were conducted, with at least 3 replicates of each plot. One WorldView satellite image for each year was acquired, close to the date of PI. Numerous single- and multi-variable models were investigated. Among single-variable models, the square of the NDRE vegetation index was shown to be a good predictor of N uptake (R 2 = 0.75, RMSE = 22.8 kg/ha for data pooled from all years and experiments). For multi-variable models, Lasso regularization was used to ensure an interpretable and compact model was chosen and to avoid over fitting. Combinations of remotely sensed reflectances and spectral indexes as well as variety, climate and management data as input variables for model training achieved R 2 < 0.9 and RMSE < 15 kg/ha for the pooled data set. The ability of remotely sensed data to predict N uptake in new seasons where no physical sample data has yet been obtained was tested. A methodology to extract models that generalize well to new seasons was developed, avoiding model overfitting. Lasso regularization selected four or less input variables, and yielded R 2 of better than 0.67 and RMSE better than 27.4 kg/ha over four test seasons that weren’t used to train the models.


Sign in / Sign up

Export Citation Format

Share Document