Microbial processing of autochthonous organic matter controls the biodegradation of 17α-ethinylestradiol in lake sediments under anoxic conditions

2021 ◽  
pp. 118760
Author(s):  
Leilei Bai ◽  
Xin Liu ◽  
Ke Hua ◽  
Linqi Tian ◽  
Changhui Wang ◽  
...  
2017 ◽  
Vol 77 (1) ◽  
Author(s):  
Shipei Dong ◽  
Zhuolun Li ◽  
Qiujie Chen ◽  
Zhiqiao Wei

Total organic carbon (TOC) content in lake sediments is typically used for the reconstruction of paleoenvironments. It remains uncertain, however, whether these sediment variables in lakes supplied by groundwater in the hinterland of the Badain Jaran Desert are applicable. Moreover, it is still uncertain whether the TOC content in these lakes can be used as a proxy to identify past climatic change and environmental evolution studies. In this study, the spatial distributions of the TOC contents and C/N ratios were analyzed for 109 surface sediment samples collected from five lakes without runoff recharge. The results revealed that the TOC content of the lake surface sediments was extremely low (0.03% - 1.01%) and consisted of both allochthonous organic matter carried by wind, as well as autochthonous organic matter generated in the lakes. Within a lake, spatial differences in the amount of TOC found in surface sediments may be caused by several processes including bathymetry topography and wind-induced wave activity. In addition, wind-induced wave activity produces a higher TOC content, which is more pronounced in larger lakes (>0.21 km2) with longer fetches. By contrast, in smaller lakes, organic matter accumulates in the deeper waters, but can be affected by many factors. It is therefore necessary to consider lake area when applying the TOC content of lake sediments for the reconstruction of a paleolake evolution. Furthermore, because the TOC content of lake sediments in hyper-arid regions is extremely low, and the organic matter may have a multiple and varied sources, a single proxy (TOC) cannot be used to reconstruct lake evolution.


2021 ◽  
Author(s):  
Marttiina V. Rantala ◽  
Carsten Meyer-Jacob ◽  
E. Henriikka Kivilä ◽  
Tomi P. Luoto ◽  
Antti. E. K. Ojala ◽  
...  

AbstractGlobal environmental change alters the production, terrestrial export, and photodegradation of organic carbon in northern lakes. Sedimentary biogeochemical records can provide a unique means to understand the nature of these changes over long time scales, where observational data fall short. We deployed in situ experiments on two shallow subarctic lakes with contrasting light regimes; a clear tundra lake and a dark woodland lake, to first investigate the photochemical transformation of carbon and nitrogen elemental (C/N ratio) and isotope (δ13C, δ15N) composition in lake water particulate organic matter (POM) for downcore inferences. We then explored elemental, isotopic, and spectral (inferred lake water total organic carbon [TOC] and sediment chlorophyll a [CHLa]) fingerprints in the lake sediments to trace changes in aquatic production, terrestrial inputs and photodegradation before and after profound human impacts on the global carbon cycle prompted by industrialization. POM pool in both lakes displayed tentative evidence of UV photoreactivity, reflected as increasing δ13C and decreasing C/N values. Through time, the tundra lake sediments traced subtle shifts in primary production, while the woodland lake carried signals of changing terrestrial contributions, indicating shifts in terrestrial carbon export but possibly also photodegradation rates. Under global human impact, both lakes irrespective of their distinct carbon regimes displayed evidence of increased productivity but no conspicuous signs of increased terrestrial influence. Overall, sediment biogeochemistry can integrate a wealth of information on carbon regulation in northern lakes, while our results also point to the importance of considering the entire spectrum of photobiogeochemical fingerprints in sedimentary studies.


Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 557-560 ◽  
Author(s):  
Austin Long ◽  
Owen K. Davis ◽  
Jeanne de Lanois

We have developed and tested a practical device for manually separating pollen from pollen concentrates in sufficient quantity for AMS 14C dating. It is a combination of standard, commercially available equipment handled in a clean room by an individual trained to recognize pollen. A typical example requires about 15–20 h of hand-picking under the microscope. We show the usefulness of this procedure with results on a mid-Holocene segment from a core from Mono Lake. Sediments from this hardwater lake contain pollen and finely disseminated organic matter, but no macrofossils. The pollen dated ca. 1000 yr younger than the bulk sediment. The sediment “date” is most likely affected by incorporation of limestone-derived carbon, and is erroneously old.


2021 ◽  
Author(s):  
Nasar Khan ◽  
Rudy Swennen ◽  
Gert Jan Weltje ◽  
Irfan Ullah Jan

<p><span><strong>Abstract:</strong> Reservoir assessment of unconventional reservoirs poses numerous exploration challenges. These challenges relate to their fine-grained and heterogeneous nature, which are ultimately controlled by depositional and diagenetic processes. To illustrate such constraints on shale gas reservoirs, this study focuses on lithofacies analysis, paleo-depositional and diagenetic evolution of the Paleocene Patala Formation at Potwar Basin of Pakistan. Integrated sedimentologic, petrographic, X-ray diffraction and TOC (total organic carbon) analyses showed that the formation contained mostly fine-grained carbonaceous, siliceous, calcareous and argilaceous siliciclastic-lithofacies, whereas carbonate microfacies included mudstone, wackestone and packstone. The silicious and carbonaceous lithofacies are considered a potential shale-gas system. The clastic lithofacies are dominated by detrital and calcareous assemblage including quartz, feldspar, calcite, organic matter and clay minerals with auxiliary pyrites and siderites. Fluctuations in depositional and diagenetic conditions caused  lateral and vertical variability in lithofacies. Superimposed on the depositional heterogeneity are spatially variable diagenetic modifications such as dissolution, compaction, cementation and stylolitization. The δ</span><sup>13</sup><span>C and δ</span><sup>15</sup><span>N stable isotopes elucidated that the formation has been deposited under anoxic conditions, which relatively enhanced the preservation of mixed marine and terrigenous organic matter. Overall, the Patala Formation exemplifies deposition in a shallow marine (shelfal) environment with episodic anoxic conditions.</span></p><p><strong>Keywords</strong><strong>:</strong> Lithofacies, Organic Matter, Paleocene, Potwar Basin, Shale Gas, Shallow Marine.</p>


1988 ◽  
Vol 30 (1) ◽  
pp. 98-101
Author(s):  
R. Scott Anderson ◽  
Ronald B. Davis ◽  
Robert Stuckenrath ◽  
Harold W. Borns

Conifer wood, probably spruce (Picea sp.), of middle Wisconsinan age (29,200 ± 500 yr B.P.) was recovered from late-glacial lake sediments from Upper South Branch Pond, Maine. If the wood was derived from a local source, deglaciation of part of northern New England is suggested for this time. The occurrence also has implications for understanding the problem associated with radiocarbon dating of bulk lake sediment containing small amounts of organic matter.


2020 ◽  
Vol 21 (1) ◽  
pp. geochem2019-060
Author(s):  
Yu Guo ◽  
Wenzhe Gang ◽  
Gang Gao ◽  
Shangru Yang ◽  
Chong Jiang ◽  
...  

Paleogene sediments, especially the third member of the Dongying Formation (Ed3) and the first and third members of the Shahejie Formation (Es1 and Es3), have been regarded as the most important source rocks in the Nanpu Sag. Organic and inorganic analyses, including Rock-Eval pyrolysis, gas chromatography-mass spectrometry, and element geochemistry, in 91 mudstone samples, were used to reconstruct the palaeoenvironmental conditions, such as palaeoclimate, palaeo-salinity and palaeo-redox conditions, and to recognize the origin of organic matter. The results show that Es3 has a higher TOC content than Es1 and Ed3. Hydrocarbon genetic potential (S1 + S2) of the samples indicate fair to good hydrocarbon potential. The kerogen type of Ed3 and Es1 source rocks are Type II1–II2, while Es3 source rocks are dominated by Type II2–III kerogens. Biomarkers and inorganic geochemical indicatives of source rocks, such as Pr/Ph, V/(V + Ni) and Cu/Zn, indicate a lacustrine environment with fresh to brackish water under suboxic to anoxic conditions during deposition. Ed3 source rocks are characterized by low G/C30H (gamacerane/C30hopane) (<0.1), TT/C30H (tricyclic terpane/C30hopane) and S/H (serane/hopane), high Pr/Ph (pristane/phytane) and C24TeT/C23TT (C24tetracyclic terpane/C23tricyclic terpane), indicating mixed input of both algae and terrestrial higher plants, dominated by terrestrial higher plants. Es1 source rocks display medium G/C30H, TT/C30H, S/H, Pr/Ph and C24TeT/C23TT, indicative of a mixed input of both algae and terrestrial higher plants. Es3 source rocks are characterized by high G/C30H (>0.1), TT/C30H and S/H, low Pr/Ph and C24TeT/C23TT, typical of a mixed input of algae and terrestrial higher plants, with algal dominance. Ed3, Es1 and Es3 source rocks were mostly deposited in semi-arid to humid-warm climate conditions, with an average temperature higher than 15°C. This study suggests that suitable temperatures, a fresh to brackish lacustrine environment and suboxic to anoxic conditions could result in a high organic matter concentration and preservation, thus providing prerequisites for the formation of high-quality source rocks.Supplementary material: Tables S1–S3 are available at https://doi.org/10.6084/m9.figshare.c.5227684


Soil Systems ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 4 ◽  
Author(s):  
Vincent Poirier ◽  
Isabelle Basile-Doelsch ◽  
Jérôme Balesdent ◽  
Daniel Borschneck ◽  
Joann K. Whalen ◽  
...  

Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil fractions are still largely unknown, especially the influence of soil mineralogy and autochthonous organic matter concentration. The objectives of this work were (1) to evaluate the retention of C and N from crop residue in the form of occluded and mineral-associated SOM in topsoil (0–20 cm) and subsoil (30–70 cm) previously incubated for 51 days with 13C-15N-labelled corn residues, and (2) to explore if specific minerals preferentially control the retention of residue-derived C and N in topsoil and subsoil. We used topsoil and subsoil having similar texture and mineralogy as proxies for soils being rich (i.e., topsoil) and poor (i.e., subsoil) in autochthonous organic matter. We performed a sequential density fractionation procedure and measured residue-derived C and N in occluded and mineral-associated SOM fractions, and used X-ray diffraction analysis of soil density fractions to investigate their mineralogy. In accordance with our hypothesis, the retention of C and N from crop residue through organo-mineral interactions was greater in subsoil than topsoil. The same minerals were involved in the retention of residue-derived organic matter in topsoil and subsoil, but the residue-derived organic matter was associated with a denser fraction in the subsoil (i.e., 2.5–2.6 g cm−3) than in the topsoil (i.e., 2.3–2.5 g cm−3). In soils and soil horizons with high clay content and reactive minerals, we find that a low SOM concentration leads to the rapid stabilization of C and N from newly added crop residues.


Sign in / Sign up

Export Citation Format

Share Document