autochthonous organic matter
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Paulina Montero ◽  
Marcelo H. Gutiérrez ◽  
Giovanni Daneri ◽  
Bárbara Jacob

Fjord ecosystems cycle and export significant amounts of carbon and appear to be extremely sensitive to climate change and anthropogenic perturbations. To identify patterns of microbial responses to ongoing natural and human-derived changes in the fjords of Chilean Patagonia, we examined the effect of organic enrichment associated with salmon aquaculture and freshening produced by glacial melting on bacterial production (BP), extracellular enzymatic activity (EEA), and community diversity of free-living bacterioplankton. We assayed the effects of salmon food-derived dissolved organic matter (SF-DOM) and meltwaters through microcosm experiments containing waters from Puyuhuapi Fjord and the proglacial fjords of the Southern Patagonia Icefield, respectively. Rates of BP and EEA were 2 times higher in the presence of SF-DOM than in controls, whereas the addition of autochthonous organic matter derived from diatoms (D-DOM) resulted in rates of BP and EEA similar to those measured in the controls. The addition of SF-DOM also reduced species richness and abundance of a significant fraction of the representative taxa of bacterioplankton of Puyuhuapi Fjord. In the proglacial fjords, bacterioplankton diversity was reduced in areas more heavily influenced by meltwaters and was accompanied by moderate positive changes in BP and EEA. Our findings strongly suggest that SF-DOM is highly reactive, promoting enhanced rates of microbial activity while could be influencing the diversity of bacterioplankton communities in Patagonian fjords with a strong salmon farming activity. These findings challenge the traditional view of phytoplankton production as the primary source of labile DOM that fuels heterotrophic activity in coastal ecosystems impacted by anthropogenic organic enrichment. Given the intensive local production of salmon, we analyze the significance of this emerging source of rich “allochthonous” organic substrates for autotrophic/heterotrophic balance, carbon exportation, and hypoxia in Patagonian fjords. The effect of human DOM enrichment can be enhanced in proglacial fjords, where progressive glacial melting exerts additional selective pressure on bacterioplankton diversity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Paulina Montero ◽  
Martina Coppari ◽  
Federico Betti ◽  
Giorgio Bavestrello ◽  
Giovanni Daneri

Aulacomya atra is an active suspension feeder, spatially dominant in the shallow-water hard-bottom benthic communities of the Chilean Patagonia fjords. In this region, the vertical flux of autochthonous organic matter (OM) reaching the benthos is augmented by allochthonous OM both from a terrestrial origin and from intensive salmon farming. This mixed pool of OM represents a potential source of food for a variety of benthic consumers, but to date little is known about the degree of utilization of these materials by filter feeders organisms. In this context, feeding experiments on A. atra in Puyuhuapi Fjord, Chilean Patagonia, were conducted during summer and winter 2018–2019. These experiments were designed to determine ingestion rates (IR) of A. atra fed with autochthonous (bacterial and microplanktonic community) and allochthonous (salmon food pellet) OM. Additionally, samples of A. atra tissues and suspended particulate organic matter (SPOM) were taken from the study area for stable isotope analysis. Data from laboratory experiments indicated that A. atra can feed on both autochthonous and allochthonous OM, but higher IR were detected in individuals fed with salmon food pellets. Because the IR is sensitive to food particle density rather than specific type of food, diet preferences of A. atra in feeding experiments could not be determined. Stable isotope analyses indicate that A. atra in natural environment preferentially exploits food with an isotopic signal corresponding to autochthonous OM, highlighting the primary role of phytoplankton carbon in their diet. Extensive utilization of terrestrially derived OM is therefore unlikely, although utilization of OM derived from salmon farming is not precluded because of the overlap in isotopic signal between food pellets and marine plankton.


2021 ◽  
Author(s):  
Marina Dinu

<p>The reactions of toxicants with organic substances of a humic nature are complex and depend on many geochemical factors. Differences in the mechanisms of the selected toxicants binding with organic natural substances of various natural waters - atmospheric precipitation, lake waters (acidic and alkaline), lysimetric waters are especially interesting. Due to significant concentration differences, features of functional groups and size distribution of components, the inactivation features of humic substances are selective and highly variable. We studied the waters of an acid lake near the city of Valday (Valday National Park, conditionally a background lake) and alkaline lake Valday (city of Valday, local technogenic influence). Near each lake there was a sediment collector (a container for collecting atmospheric precipitation) and a lysimeter (a container under the soil for collecting soil moisture) under the humus horizon (about 20 cm). Particular attention was paid to soil (lysimetric) waters with varying degrees of anthropogenic impact. We considered the behavior of a large group of heavy metals, as well as benzopyrene. To assess the composition and qualitative features of organic substances, gas chromatography-mass spectrometric methods of analysis were used. Chromatographic methods were used to assess the molecular weight distribution of the components. Possible reaction mechanisms were studied by IR spectral methods. Evaluation of the reactivity of organic substances was carried out by the methods of dynamic light scattering (zeta potential, MM, size) using the "Zeta-sizer nano". In addition to humic substances in the waters, the contents of autochthonous organic matter were estimated, especially in an alkaline lake, which in some periods prevailed over humic ones. In addition to humic substances in the waters, the contents of autochthonous organic matter were estimated, especially in an alkaline lake, which in some periods prevailed over humic ones. For separation, exchange technique and fluorometric evaluations were used. We conducted research in the period 2015-2020, sampling was carried out in spring, summer, autumn. Thus, we studied the circulation (in miniature) of changes in the protective properties of humic substances, depending on a large number of factors.</p>


2020 ◽  
Author(s):  
Carolin Kiefer ◽  
Michael Krautblatter ◽  
Christoph Mayr ◽  
Patrick Oswald ◽  
Michael Strasser

<p>Debris flows represent a widespread geomorphological hazard in mountainous regions. Understanding the long-term dynamics of debris flow activity in view of climate change is crucial for the prevention and mitigation of future events. The activity of debris flows is evidently linked to the magnitude of rainstorms. Dietrich & Krautblatter (2017) found an increase in debris flow volumes after 1980 by a factor of 2 compared to the period 1947-1980 and by a factor of 3 compared to the mean Lateglacial/Holocene debris flow volumes by investigating aerial photos of the surroundings of lake Plansee (Reutte, Austria) and estimating debris flow cone volumes with geophysical methods.</p><p>In this study, the terrestrial observations of increasing debris flow volumes were compared with the subaquatic deposits from the deepest basin of the lake. The debris flow volume within a three-month period on a large debris cone was monitored by Terrestrial Laserscanning (TLS) and the debris flow activity over the last 3 600 years was reconstructed using sediment cores. Four short cores of up to 145 cm depth were recovered in a transect from the shallow subaquatic debris cone area to the deepest basin of the lake. The grain size, density, Magnetic Susceptibility as well as the d<sup>13</sup>-C, d<sup>15</sup>N- and C/N-ratios of the sediment were analyzed.</p><p>The Terrestrial Laserscans revealed a sediment delivery ratio of 30% for the steep debris cone bordering the lake. In the four correlated short cores, 52 debris flow events were differentiated within the last 3 600 years of sedimentation. The proportion of event layers in the cores ranges between 34% and 57% of the total section thickness. The sedimentation rates from a dated core confirm the increase of debris flow activity that was observed with terrestrial methods by Dietrich & Krautblatter (2017). The sedimentation rates show an 11-fold increase after 1930 compared to the rates before 1930 and a 5-fold to 12-fold increase compared to the average Holocene sedimentation rates in lake Plansee. Three types of event deposits were distinguished according to sedimentological criteria: flood-triggered debris flows, earthquake-induced subaquatic suspension flows and mega-events. The TOC/TN ratios of the sediment reveal a permanent influence of terrestrial carbon on the lake sediment and a mixed source of allochthonous and autochthonous organic matter. Large debris flow events can be distinguished from background sediments by increased d<sup>13</sup>C isotope ratios.</p><p>The results of this study reveal further scientific proof for the increase of debris flow activity in conjunction with increasing rainstorm activity. Here we show one of the first long-term archives of debris flow activity in the Northern Alps spanning the last 3 600 years and revealing cyclic shifts in debris-flow transport volumes by one order of magnitude.</p>


2020 ◽  
Author(s):  
Mary Zeller ◽  
Bryce Van Dam ◽  
Chris Lopes ◽  
Ashley Smyth ◽  
Christopher Osburn ◽  
...  

<p>Florida Bay is subtropical embayment characterized by dense Thalassia testudinum seagrass meadows, the prevalence of carbonate-rich sediments, and relatively long residence times (~1 yr). Florida Bay seagrass meadows store appreciable quantities of allochthonous and autochthonous organic matter (OM) as so-called ‘blue carbon’, the fate of which is therefore tied to that of the carbonate minerals it is bound to.  Dissolved organic carbon (DOC) concentrations are also relatively high (~7-12 mg/L), despite potential photo-oxidative loss in this shallow and long residence time system, as well as low internal DOC production due to the ecosystem’s documented oligotrophy.  These carbonate sediments can dissolve through net acid production via sediment heterotrophic processes as well as sulfide oxidation, processes which may be enhanced via O<sub>2</sub> pumping through seagrass roots.  </p><p>This study investigated the impact of carbonate dissolution on the release of sediment-associated OM to surface waters, and the relative contribution of this process to surface water DOC quantity and quality.  We undertook a three-part experimental approach, with analyses including EEMs, δ13C-DOC, and FT-ICR-MS, to better understand the sources and fate of DOC in Florida Bay. 1) We conducted a spatial survey of surface waters, pore waters, and acid-leachable (representing the ‘carbonate-bound’ OM fraction) sedimentary OM.  2)  We conducted a DOM photodegradation study using two potential source surface waters, from a main tributary (Taylor Slough) and a central mangrove island.  3) We conducted benthic flux experiments using intact sediment cores facilitating direct measurements of the quality and quantity of DOC release from sediments. The flux information was placed into the context of sediment dissolution rates, estimated from coinciding determinations of alkalinity and inorganic carbon.</p><p>While analyses are ongoing, our initial results indicate a high degree of similarity between the fluorescence signature (PARAFAC components and fluorescence indices) of acid-leachable sedimentary OM, and that of DOC in pore water and surface water throughout Florida Bay.  Taken together, our study points to sediment dissolution as an important, yet understudied, process affecting organic carbon cycling in carbonate-dominated systems like Florida Bay.</p>


Soil Systems ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 4 ◽  
Author(s):  
Vincent Poirier ◽  
Isabelle Basile-Doelsch ◽  
Jérôme Balesdent ◽  
Daniel Borschneck ◽  
Joann K. Whalen ◽  
...  

Decomposing crop residues contribute to soil organic matter (SOM) accrual; however, the factors driving the fate of carbon (C) and nitrogen (N) in soil fractions are still largely unknown, especially the influence of soil mineralogy and autochthonous organic matter concentration. The objectives of this work were (1) to evaluate the retention of C and N from crop residue in the form of occluded and mineral-associated SOM in topsoil (0–20 cm) and subsoil (30–70 cm) previously incubated for 51 days with 13C-15N-labelled corn residues, and (2) to explore if specific minerals preferentially control the retention of residue-derived C and N in topsoil and subsoil. We used topsoil and subsoil having similar texture and mineralogy as proxies for soils being rich (i.e., topsoil) and poor (i.e., subsoil) in autochthonous organic matter. We performed a sequential density fractionation procedure and measured residue-derived C and N in occluded and mineral-associated SOM fractions, and used X-ray diffraction analysis of soil density fractions to investigate their mineralogy. In accordance with our hypothesis, the retention of C and N from crop residue through organo-mineral interactions was greater in subsoil than topsoil. The same minerals were involved in the retention of residue-derived organic matter in topsoil and subsoil, but the residue-derived organic matter was associated with a denser fraction in the subsoil (i.e., 2.5–2.6 g cm−3) than in the topsoil (i.e., 2.3–2.5 g cm−3). In soils and soil horizons with high clay content and reactive minerals, we find that a low SOM concentration leads to the rapid stabilization of C and N from newly added crop residues.


Author(s):  
G. Ts. Tsybekmitova ◽  
L. D. Radnaeva ◽  
N. A. Tashlykova ◽  
V. G. Shiretorova ◽  
A. K. Tulokhonov ◽  
...  

Lake Arakhley is located within the Lake Baikal basin in Eastern Siberia, Russia. The area is characterized by continental subarctic climate with considerate diurnal temperature range, long cold dry winters and short hot summers with more precipitation occurring during the latter half of the summer. Climatic shifts in high water years and low water years result in morphometric changes in the lake and in the chemical and physical parameters of the ecosystem. During low water years, concentrations of ammonium nitrogen and nitrite nitrogen are decreased, whereas nitrate concentration increases. High water years feature average concentrations of ammonium ions 1.5–2 times higher than the values of recent dry years. Redundancy analysis (RDA) of abiotic factors and biotic community indicated that the community structure shows the greatest correlation with physical and chemical parameters of water and biogenic elements (nitrites, ammonium, phosphates) along the first axis, and with the lake depth and transparency along the second axis. Changes in abiotic factors induce functioning and formation of characteristic communities of the primary producers in the trophic structure of the ecosystem. During low water years, with increased level of autochthonous organic matter, Lindavia comta dominance is observed, while during high water years, with increased allochthonous organic matter Asterionella formosa appeared as dominant. Currently, during low water years, the hydrophytes community is monodominant and composed of Ceratophyllum demersum. Meanwhile, such species indicating eutrophic conditions as Myriophyllum sibiricum, Potamogeton pectinatus are found in the lake vegetation.


Sign in / Sign up

Export Citation Format

Share Document