scholarly journals Fine particulate matter and cardiovascular disease: Comparison of assessment methods for long-term exposure

2017 ◽  
Vol 159 ◽  
pp. 16-23 ◽  
Author(s):  
Laura A. McGuinn ◽  
Cavin Ward-Caviness ◽  
Lucas M. Neas ◽  
Alexandra Schneider ◽  
Qian Di ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 947
Author(s):  
R. Burciaga Valdez ◽  
Mohammad Z. Al-Hamdan ◽  
Mohammad Tabatabai ◽  
Darryl B. Hood ◽  
Wansoo Im ◽  
...  

There is a well-documented association between ambient fine particulate matter air pollution (PM2.5) and cardiovascular disease (CVD) morbidity and mortality. Exposure to PM2.5 can cause premature death and harmful and chronic health effects such as heart attack, diabetes, and stroke. The Environmental Protection Agency sets annual PM2.5 standards to reduce these negative health effects. Currently above an annual average level of 12.0 µg/m is considered unhealthy. Methods. We examined the association of long-term exposure to PM2.5 and CVD in a cohort of 44,610 individuals who resided in 12 states recruited into the Southern Community Cohort Study (SCCS). The SCCS was designed to recruit Black and White participants who received care from Federally Qualified Health Centers; hence, they represent vulnerable individuals from low-income families across this vast region. This study tests whether SCCS participants who lived in locations exposed to elevated ambient levels of PM2.5 concentrations were more likely to report a history of CVD at enrollment (2002–2009). Remotely sensed satellite data integrated with ground monitoring data provide an assessment of the average annual PM2.5 in urban and rural locations where the SCCS participants resided. We used multilevel logistic regression to estimate the associations between self-reported CVD and exposure to elevated ambient levels of PM2.5. Results. We found a 13.4 percent increase in the odds of reported CVD with exposure to unhealthy levels of PM2.5 exposure at enrollment. The SCCS participants with medical histories of hypertension, hypercholesterolemia, and smoking had, overall, 385 percent higher odds of reported CVD than those without these clinical risk factors. Additionally, Black participants were more likely to live in locations with higher ambient PM2.5 concentrations and report high levels of clinical risk factors, thus, they may be at a greater future risk of CVD. Conclusions: In the SCCS participants, we found a strong relation between exposures to high ambient levels of PM2.5 and self-reported CVD at enrollment.


2020 ◽  
Vol 75 (7) ◽  
pp. 707-717 ◽  
Author(s):  
Fengchao Liang ◽  
Fangchao Liu ◽  
Keyong Huang ◽  
Xueli Yang ◽  
Jianxin Li ◽  
...  

2019 ◽  
Vol 247 ◽  
pp. 874-882 ◽  
Author(s):  
Yang Yang ◽  
Zengliang Ruan ◽  
Xiaojie Wang ◽  
Yin Yang ◽  
Tonya G. Mason ◽  
...  

Author(s):  
Cavin K. Ward‐Caviness, ◽  
Mahdieh Danesh Yazdi, ◽  
Joshua Moyer, ◽  
Anne M. Weaver, ◽  
Wayne E. Cascio, ◽  
...  

Background Long‐term air pollution exposure is a significant risk factor for inpatient hospital admissions in the general population. However, we lack information on whether long‐term air pollution exposure is a risk factor for hospital readmissions, particularly in individuals with elevated readmission rates. Methods and Results We determined the number of readmissions and total hospital visits (outpatient visits+emergency room visits+inpatient admissions) for 20 920 individuals with heart failure. We used quasi‐Poisson regression models to associate annual average fine particulate matter at the date of heart failure diagnosis with the number of hospital visits and 30‐day readmissions. We used inverse probability weights to balance the distribution of confounders and adjust for the competing risk of death. Models were adjusted for age, race, sex, smoking status, urbanicity, year of diagnosis, short‐term fine particulate matter exposure, comorbid disease, and socioeconomic status. A 1‐µg/m 3 increase in fine particulate matter was associated with a 9.31% increase (95% CI, 7.85%–10.8%) in total hospital visits, a 4.35% increase (95% CI, 1.12%–7.68%) in inpatient admissions, and a 14.2% increase (95% CI, 8.41%–20.2%) in 30‐day readmissions. Associations were robust to different modeling approaches. Conclusions These results highlight the potential for air pollution to play a role in hospital use, particularly hospital visits and readmissions. Given the elevated frequency of hospitalizations and readmissions among patients with heart failure, these results also represent an important insight into modifiable environmental risk factors that may improve outcomes and reduce hospital use among patients with heart failure.


Sign in / Sign up

Export Citation Format

Share Document